Abstract
Six equivalent definitions of Frobenius algebra in a monoidal category are provided. In a monoidal bicategory, a pseudoalgebra is Frobenius if and only if it is star autonomous. Autonomous pseudoalgebras are also Frobenius. What it means for a morphism of a bicategory to be a projective equivalence is defined; this concept is related to “strongly separable” Frobenius algebras and “weak monoidal Morita equivalence.” Wreath products of Frobenius algebras are discussed.
REFERENCES
- 1. Baez, John, 〈http://math.ucr.edu/home/baez/〉. Google Scholar
- 2. Barr, M., “ *-Autonomous categories, with an appendix by Po Hsiang Chu,” Lecture Notes in Mathematics (Springer, Berlin, 1979), Vol. 752. Google Scholar
- 3. Barr, M., “Nonsymmetric *-autonomous categories,” Theor. Comput. Sci. 139, 115–130 (1995). Google ScholarCrossref
- 4. Barr, M., “The Chu construction,” Theory Appl. Categ. 2, 17–35 (1996). Google Scholar
- 5. Barrett, J. W., and Westbury, B. W., “Invariants of piecewise-linear 3-manifolds,” Trans. Am. Math. Soc. 348, 3997–4022 (1996). Google ScholarCrossref
- 6. Barrett, J. W. and Westbury, B. W., “Spherical categories,” Adv. Math. 143, 357–375 (1999). Google ScholarCrossref
- 7. Beck, Jonathon, “Triples, algebras and cohomology,” Rep. Theory Appl. Categ. No. 2, 1–59 (2003). Google Scholar
- 8. Bénabou, J., “ Introduction to bicategories,” Lecture Notes in Math (Springer, Berlin, 1967), Vol. 47, pp. 1–77. Google Scholar
- 9. Bichon, Julien and Street, Ross, “Militaru’s D-equation in monoidal categories,” Appl. Categ. Struct. 11, 337–357 (2003). Google ScholarCrossref
- 10. Boyer, Stephen and Joyal, André, “ Separable algebras and Seifert surfaces” (preprint, 1994). Google Scholar
- 11. Carboni, Aurelio, “Matrices, relations and group representations,” J. Algebra 136, 497–529 (1991). Google ScholarCrossref
- 12. Carboni, Aurelio and Walters, Robert, “Cartesian bicategories I,” J. Pure Appl. Algebra 49, 11–32 (1987). Google ScholarCrossref
- 13. Carmody, Sean, “ Cobordism categories,” Ph.D. thesis, University of Cambridge, 1995. Google Scholar
- 14. Day, B.J., “ On closed categories of functors,” Lecture Notes in Math (Springer, Berlin, 1970), Vol. 137, pp. 1–38. Google Scholar
- 15. Day, Brian, McCrudden, Paddy, and Street, Ross, “Dualizations and antipodes,” Appl. Categ. Struct. 11, 229–260 (2003). Google ScholarCrossref
- 16. Day, Brian and Street, Ross, “Monoidal bicategories and Hopf algebroids,” Adv. Math. 129, 99–157 (1997). Google ScholarCrossref
- 17. Day, Brian and Street, Ross, Quantum categories, star autonomy, and quantum groupoids, in “Galois Theory, Hopf Algebras, and Semiabelian Categories,” Fields Inst. Commun. 43, 193–231 (2004). Google Scholar
- 18. Drinfel’d, V. G., “Quasi-Hopf algebras” Algebra Anal. 1, 114–148 (1989) Google Scholar
Drinfel’d, V. G., [Leningrad Math. J. 1, 1419–1457 (1990)]. Google Scholar - 19. Eilenberg, Samuel and Moore, John C., “Adjoint functors and triples,” Ill. J. Math. 9, 381–398 (1965). Google ScholarCrossref
- 20. Freyd, P. J., O’Hearn, P. W., Power A. J., Street, R., Takeyama, M., and Tennent, R. D., “Bireflectivity,” Theor. Comput. Sci. 228, 49–76 (1999). Google ScholarCrossref
- 21. Johnson, S. R., “Monoidal Morita equivalence,” J. Pure Appl. Algebra 59, 169–177 (1989(a)). Google ScholarCrossref
- 22. Johnson, S. R., “Small Cauchy completions,” J. Pure Appl. Algebra 62, 35–45 (1989(b)). Google ScholarCrossref
- 23. Joyal, André and Street, Ross, “The geometry of tensor calculus I,” Adv. Math. 88, 55–112 (1991). Google ScholarCrossref
- 24. Joyal, André and Street, Ross, “Tortile Yang–Baxter operators in tensor categories,” J. Pure Appl. Algebra 71, 43–51 (1991). Google ScholarCrossref
- 25. Joyal, André and Street, Ross, An Introduction to Tannaka Duality and Quantum Groups, Lecture Notes in Mathematics (Springer-Verlag, Berlin, 1991), Vol. 1488, pp. 411–492. Google Scholar
- 26. Kassel, Christian, Quantum Groups, Graduate Texts in Math (Springer-Verlag, Berlin, 1995), Vol. 155. Google Scholar
- 27. Kelly, G.M., Basic Concepts of Enriched Category Theory, London Math. Soc. Lecture Notes Series (Cambridge University Press, Cambridge 1982), Vol. 64. Google Scholar
- 28. Kelly, G. M. and Street, Ross, “Review of the elements of 2-categories,” Lect. Notes Math. 420, 75–103 (1974). Google ScholarCrossref
- 29. Kerler, Thomas and Lyubashenko, VolodymyrL., Non-Semisimple Topological Quantum Field Theories for 3-Manifolds with Corners, Lecture Notes in Mathematics (Springer, Berlin, 2001), Vol. 1765. Google Scholar
- 30. Kock, Joachim, Frobenius Algebras and 2D Topological Quantum Field Theories, London Math. Soc. Student Texts (Cambridge University Press, Cambridge, 2003), Vol. 59. Google Scholar
- 31. Lack, Stephen and Street, Ross, “The formal theory of monads II,” J. Pure Appl. Algebra 175, 243–265 (2002). Google ScholarCrossref
- 32. Larson, R. G. and Sweedler, M. E., “An associative orthogonal bilinear form for Hopf algebras,” Am. J. Math. 91, 75–94 (1969). Google ScholarCrossref
- 33. Lawvere, F. W., “Ordinal sums and equational doctrines,” in Seminar on Triples and Categorical Homology Theory, Lect. Notes Math. 80, 141–155 (1969). Google ScholarCrossref
- 34. Lawvere, F. W., “Metric spaces, generalized logic, and closed categories,” Rend. Semin. Mat. Fis. Milano 43, 135–166 (1974). Google ScholarCrossref
- 35. MacLane, S., Categories for the Working Mathematician, Graduate Texts in Math (Springer-Verlag, Berlin, 1971), Vol. 5. Google Scholar
- 36. Majid, Shahn, Foundations of Quantum Group Theory (Cambridge University Press, Cambridge, 1995). Google Scholar
- 37. McCrudden, Paddy, “ Categories of representations of balanced coalgebroids” Ph.D. thesis, Macquarie University, 1999. Google Scholar
- 38. Müger, Michael, “From subfactors to categories and topology. I: Frobenius algebras in and Morita equivalence of tensor categories,” J. Pure Appl. Algebra 180, 81–157 (2003a). Google ScholarCrossref
- 39. Müger, Michael, “From subfactors to categories and topology. II: The quantum double of tensor categories and subfactors,” J. Pure Appl. Algebra 180, 159–219 (2003b). Google ScholarCrossref
- 40. Street, Ross, “The formal theory of monads,” J. Pure Appl. Algebra 2, 149–168 (1972). Google ScholarCrossref
- 41. Street, Ross, “Enriched categories and cohomology,” Quaest. Math. 6, 265–283 (1983). Google ScholarCrossref
- 42. Street, Ross, “Absolute colimits in enriched categories,” Cah. Topol. Geom. Differ. 24, 377–379 (1983). Google Scholar
- 43. Street, Ross, “Higher categories, strings, cubes and simplex equations,” Appl. Categ. Struct. 3, 29–77 (1995); Google ScholarCrossref
Street, Ross, “Higher categories, strings, cubes and simplex equations,” Appl. Categ. Struct. 3, 303 (1995). , Google ScholarCrossref - © 2004 American Institute of Physics.
Please Note: The number of views represents the full text views from December 2016 to date. Article views prior to December 2016 are not included.

