Published Online: 12 October 2004
Accepted: June 2004
Journal of Mathematical Physics 45, 3930 (2004); https://doi.org/10.1063/1.1788852
more...View Affiliations
  • Centre of Australian Category Theory, Macquarie University, New South Wales 2109, Australia
Six equivalent definitions of Frobenius algebra in a monoidal category are provided. In a monoidal bicategory, a pseudoalgebra is Frobenius if and only if it is star autonomous. Autonomous pseudoalgebras are also Frobenius. What it means for a morphism of a bicategory to be a projective equivalence is defined; this concept is related to “strongly separable” Frobenius algebras and “weak monoidal Morita equivalence.” Wreath products of Frobenius algebras are discussed.
  1. 1. Baez, John, 〈http://math.ucr.edu/home/baez/〉. Google Scholar
  2. 2. Barr, M., “ *-Autonomous categories, with an appendix by Po Hsiang Chu,” Lecture Notes in Mathematics (Springer, Berlin, 1979), Vol. 752. Google Scholar
  3. 3. Barr, M., “Nonsymmetric *-autonomous categories,” Theor. Comput. Sci. 139, 115–130 (1995). Google ScholarCrossref
  4. 4. Barr, M., “The Chu construction,” Theory Appl. Categ. 2, 17–35 (1996). Google Scholar
  5. 5. Barrett, J. W., and Westbury, B. W., “Invariants of piecewise-linear 3-manifolds,” Trans. Am. Math. Soc. 348, 3997–4022 (1996). Google ScholarCrossref
  6. 6. Barrett, J. W. and Westbury, B. W., “Spherical categories,” Adv. Math. 143, 357–375 (1999). Google ScholarCrossref
  7. 7. Beck, Jonathon, “Triples, algebras and cohomology,” Rep. Theory Appl. Categ. No. 2, 1–59 (2003). Google Scholar
  8. 8. Bénabou, J., “ Introduction to bicategories,” Lecture Notes in Math (Springer, Berlin, 1967), Vol. 47, pp. 1–77. Google Scholar
  9. 9. Bichon, Julien and Street, Ross, “Militaru’s D-equation in monoidal categories,” Appl. Categ. Struct. 11, 337–357 (2003). Google ScholarCrossref
  10. 10. Boyer, Stephen and Joyal, André, “ Separable algebras and Seifert surfaces” (preprint, 1994). Google Scholar
  11. 11. Carboni, Aurelio, “Matrices, relations and group representations,” J. Algebra 136, 497–529 (1991). Google ScholarCrossref
  12. 12. Carboni, Aurelio and Walters, Robert, “Cartesian bicategories I,” J. Pure Appl. Algebra 49, 11–32 (1987). Google ScholarCrossref
  13. 13. Carmody, Sean, “ Cobordism categories,” Ph.D. thesis, University of Cambridge, 1995. Google Scholar
  14. 14. Day, B.J., “ On closed categories of functors,” Lecture Notes in Math (Springer, Berlin, 1970), Vol. 137, pp. 1–38. Google Scholar
  15. 15. Day, Brian, McCrudden, Paddy, and Street, Ross, “Dualizations and antipodes,” Appl. Categ. Struct. 11, 229–260 (2003). Google ScholarCrossref
  16. 16. Day, Brian and Street, Ross, “Monoidal bicategories and Hopf algebroids,” Adv. Math. 129, 99–157 (1997). Google ScholarCrossref
  17. 17. Day, Brian and Street, Ross, Quantum categories, star autonomy, and quantum groupoids, in “Galois Theory, Hopf Algebras, and Semiabelian Categories,” Fields Inst. Commun. 43, 193–231 (2004). Google Scholar
  18. 18. Drinfel’d, V. G., “Quasi-Hopf algebras” Algebra Anal. 1, 114–148 (1989) Google Scholar
    Drinfel’d, V. G., [Leningrad Math. J. 1, 1419–1457 (1990)]. Google Scholar
  19. 19. Eilenberg, Samuel and Moore, John C., “Adjoint functors and triples,” Ill. J. Math. 9, 381–398 (1965). Google ScholarCrossref
  20. 20. Freyd, P. J., O’Hearn, P. W., Power A. J., Street, R., Takeyama, M., and Tennent, R. D., “Bireflectivity,” Theor. Comput. Sci. 228, 49–76 (1999). Google ScholarCrossref
  21. 21. Johnson, S. R., “Monoidal Morita equivalence,” J. Pure Appl. Algebra 59, 169–177 (1989(a)). Google ScholarCrossref
  22. 22. Johnson, S. R., “Small Cauchy completions,” J. Pure Appl. Algebra 62, 35–45 (1989(b)). Google ScholarCrossref
  23. 23. Joyal, André and Street, Ross, “The geometry of tensor calculus I,” Adv. Math. 88, 55–112 (1991). Google ScholarCrossref
  24. 24. Joyal, André and Street, Ross, “Tortile Yang–Baxter operators in tensor categories,” J. Pure Appl. Algebra 71, 43–51 (1991). Google ScholarCrossref
  25. 25. Joyal, André and Street, Ross, An Introduction to Tannaka Duality and Quantum Groups, Lecture Notes in Mathematics (Springer-Verlag, Berlin, 1991), Vol. 1488, pp. 411–492. Google Scholar
  26. 26. Kassel, Christian, Quantum Groups, Graduate Texts in Math (Springer-Verlag, Berlin, 1995), Vol. 155. Google Scholar
  27. 27. Kelly, G.M., Basic Concepts of Enriched Category Theory, London Math. Soc. Lecture Notes Series (Cambridge University Press, Cambridge 1982), Vol. 64. Google Scholar
  28. 28. Kelly, G. M. and Street, Ross, “Review of the elements of 2-categories,” Lect. Notes Math. 420, 75–103 (1974). Google ScholarCrossref
  29. 29. Kerler, Thomas and Lyubashenko, VolodymyrL., Non-Semisimple Topological Quantum Field Theories for 3-Manifolds with Corners, Lecture Notes in Mathematics (Springer, Berlin, 2001), Vol. 1765. Google Scholar
  30. 30. Kock, Joachim, Frobenius Algebras and 2D Topological Quantum Field Theories, London Math. Soc. Student Texts (Cambridge University Press, Cambridge, 2003), Vol. 59. Google Scholar
  31. 31. Lack, Stephen and Street, Ross, “The formal theory of monads II,” J. Pure Appl. Algebra 175, 243–265 (2002). Google ScholarCrossref
  32. 32. Larson, R. G. and Sweedler, M. E., “An associative orthogonal bilinear form for Hopf algebras,” Am. J. Math. 91, 75–94 (1969). Google ScholarCrossref
  33. 33. Lawvere, F. W., “Ordinal sums and equational doctrines,” in Seminar on Triples and Categorical Homology Theory, Lect. Notes Math. 80, 141–155 (1969). Google ScholarCrossref
  34. 34. Lawvere, F. W., “Metric spaces, generalized logic, and closed categories,” Rend. Semin. Mat. Fis. Milano 43, 135–166 (1974). Google ScholarCrossref
  35. 35. MacLane, S., Categories for the Working Mathematician, Graduate Texts in Math (Springer-Verlag, Berlin, 1971), Vol. 5. Google Scholar
  36. 36. Majid, Shahn, Foundations of Quantum Group Theory (Cambridge University Press, Cambridge, 1995). Google Scholar
  37. 37. McCrudden, Paddy, “ Categories of representations of balanced coalgebroids” Ph.D. thesis, Macquarie University, 1999. Google Scholar
  38. 38. Müger, Michael, “From subfactors to categories and topology. I: Frobenius algebras in and Morita equivalence of tensor categories,” J. Pure Appl. Algebra 180, 81–157 (2003a). Google ScholarCrossref
  39. 39. Müger, Michael, “From subfactors to categories and topology. II: The quantum double of tensor categories and subfactors,” J. Pure Appl. Algebra 180, 159–219 (2003b). Google ScholarCrossref
  40. 40. Street, Ross, “The formal theory of monads,” J. Pure Appl. Algebra 2, 149–168 (1972). Google ScholarCrossref
  41. 41. Street, Ross, “Enriched categories and cohomology,” Quaest. Math. 6, 265–283 (1983). Google ScholarCrossref
  42. 42. Street, Ross, “Absolute colimits in enriched categories,” Cah. Topol. Geom. Differ. 24, 377–379 (1983). Google Scholar
  43. 43. Street, Ross, “Higher categories, strings, cubes and simplex equations,” Appl. Categ. Struct. 3, 29–77 (1995); Google ScholarCrossref
    Street, Ross, “Higher categories, strings, cubes and simplex equations,” Appl. Categ. Struct. 3, 303 (1995). , Google ScholarCrossref
  44. © 2004 American Institute of Physics.