No Access Submitted: 16 October 2003 Accepted: 24 February 2004 Published Online: 13 April 2004
Appl. Phys. Lett. 84, 3028 (2004); https://doi.org/10.1063/1.1710732
more...View Affiliations
  • Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08540
View Contributors
  • D. Staack
  • Y. Raitses
  • N. J. Fisch
Plasma potentials and electron temperatures were deduced from emissive and cold floating probe measurements in a 2 kW Hall thruster, operated in the discharge voltage range of 200–400 V. An almost linear dependence of the electron temperature on the plasma potential was observed in the acceleration region of the thruster both inside and outside the thruster. This result calls into question whether secondary electron emission from the ceramic channel walls plays a significant role in electron energy balance. The proportionality factor between the axial electron temperature gradient and the electric field is also significantly smaller than might be expected by fluid models.
  1. 1. A. Morosov and V. Savelyev, in Review of Plasma Physics, edited by B. Kadomtsev and V. Shafranov (Kluwer, Dordrecht, 2000), Vol. 21. Google Scholar
  2. 2. E. Ahedo, J. Gallardo, and M. Martinez-Sanchez, Phys. Plasmas 10, 3397 (2003). Google ScholarScitation
  3. 3. M. Keidarand I. D. Boyd, Phys. Plasmas 8, 5315 (2001), and additional model results from correspondence with author. Google ScholarScitation
  4. 4. Y. Raitses, D. Staack, A. Dunaevsky, L. Dorf, and N. J. Fisch, Proceeding of the 28th International Electric Propulsion Conference, March 2003, Toulouse, France (Electric Rocket Propulson Society, Cleveland, 2003), IEPC paper No. 03-0139. Google Scholar
  5. 5. F. Chen, in Plasma Diagnostic Techniques, edited by R. Huddlestone and S. Leonard (Academic, New York, 1965). Google Scholar
  6. 6. Y. Raitses, D. Staack, L. Dorf, and N. J. Fisch, Proceedings of the 39th Joint Propulsion Conference and Exhibit, July 20–23, 2003, Huntsville, AL (American Institute of Aeronautics and Astronautics, Reston, VA, 2003), AIAA paper No. 2003-5153. Google Scholar
  7. 7. D. Staack, Y. Raitses, and N. J. Fisch, Rev. Sci. Instrum. 75, 393 (2004). Google ScholarScitation
  8. 8. A. V. Zharinovand Y. S. Popov, Sov. Phys. Tech. Phys. 12, 208 (1967). Google Scholar
  9. 9. G. D. Hobbsand J. A. Wesson, Plasma Phys. 9, 85 (1967). Google ScholarCrossref
  10. 10. E. Y. Choueiri, Phys. Plasmas 8, 5025 (2001). Google ScholarScitation
  11. 11. N. Meezanand M. Cappelli, Phys. Rev. E 66, 036401 (2002). Google ScholarCrossref
  12. 12. Y. Raitses, M. Keidar, D. Staack, and N. J. Fisch, J. Appl. Phys. 92, 4906 (2002). Google ScholarScitation
  13. 13. N. Meezan, W. Hargus, and M. Cappelli, Phys. Rev. E 63, 026410 (2001). Google ScholarCrossref
  14. 14. J. M. Haas and A. D. Gallimore, Proceedings of the 36th Joint Propulsion Conference July 16–19, 2000, Huntsville, AL (American Institute of Aeronautics and Astronautics, Reston, VA, 2000), AIAA paper No. 00-3422. Google Scholar
  15. 15. J. Szabo, Proceeding of the 27th International Electric Propulsion Conference, October 2001, Pasadena, CA (Electric Rocket Propulsion Society, Cleveland, 2001), IEPC paper No. 01-341. Google Scholar
  16. 16. N. Warner, J. Szabo, and M. Martinez-Sanchez, Proceeding of the 28th International Electric Propulsion Conference, March 2003, Toulouse, France (Electric Rocket Propulsion Society, Cleveland, 2003), IEPC paper No. 03-082. Google Scholar
  17. 17. L. Garrigues, G. J. M. Hagelaar, J. Bareilles, C. Boniface, and J. P. Boeuf, Phys. Plasmas 10, 4886 (2003). Google ScholarScitation
  1. © 2004 American Institute of Physics.