No Access
Published Online: 13 April 2004
Journal of Applied Physics 9, 718 (1938); https://doi.org/10.1063/1.1710381
more...View Affiliations
  • Cryogenic Laboratory, California Institute of Technology, Pasadena, California
I. Theoretical considerations.—The conditions which determine whether a homogeneous liquid will solidify into the crystalline or into the vitreous state are discussed and a brief account of the rôle of the speed of crystallization, V, and that of grain formation, N, is given. These concepts are applied to the causes of the death due to crystallization of nondehydrated organic cells, and the physical conditions of cooling are developed under which such organisms can be solidified with a minimum of crystallization, assuring to this extent the preservation of their potential life.
II. Technical considerations.—Methods for obtaining cooling rates up to 104 deg. sec.−1 applicable to organic cells in a highly dispersed state are developed. As subject for the experiments, pure strains of yeast (Saccharomyces cerevisiae) were chosen on account of the high sensitivity to low temperatures. As death criterion, the permeability of the cells to a standard aqueous solution of methylene blue was chosen, the death rate was thus determined microphotographically or with a counting chamber. Different techniques of exposure favoring and preventing crystallization are developed.
III. Experimental results.—The rate of cooling of suspensions of living cells in aqueous media was varied from 1 to 104 deg. sec.−1 and thus conditions favoring either crystallization or vitrification of the cell plasma were produced. The death rate at an exposure of −185°C was thus varied from approximately 75 percent to approximately 3 percent. The duration of exposure at this temperature was varied from 5′ to 6000′; no appreciable influence of the time of exposure was found. The temperature to which the cells were cooled was varied from −50°C to −252°C and it was found that between −185°C and −252°C the temperature did not affect the death rate. Above app. −150°C an increase of the death rate was found, and a dependence upon the time of exposure, since the speed of crystallization begins to be appreciable. Repeated exposures of the same cells under conditions not especially favoring vitrification were studied and the integral death rate, δn (death rate after nth exposure) was investigated with respect to a constancy of the death rate (δ) at each freezing. It appears that the death rate for repeated freezings is not controlled by simple probability relations, but that other effects enter, such as weakening of cells by previous exposures and the selection of cold‐resistant cells by survival.
  1. 1. G. Tammann, Kristallisieren u. Schmelzen (Leipzig, 1903); Google Scholar
    Aggregatzustände (Leipzig, 1923); Google Scholar
    Der Glaszustand (Leipzig, 1932); Google Scholar
    Zeits. f. Anorg. Chemie 222, 371 (1935); Google ScholarCrossref
    Abh. Ges. Wiss. Göttingen 3, 92 (1937). , Google Scholar
  2. 2. A. Goetz, Zeits. f. Krist. 89A, 310 (1934); Google Scholar
    A. Goetz, Pap. Disc. Int. Conf. London II, 62 (1934); Google Scholar
    A. Goetz, Phys. Rev. 47, 257 (1935); Google Scholar
    A. Goetz and S. Scott Goetz, Naturwiss. 26, 427 (1938); Google ScholarCrossref
    Proc. Am. Phil. Soc. Sept. (1938). , Google Scholar
  3. 3. J. Bělehrádek, Temperature and Living Matter (Berlin, 1935). Google Scholar
  4. 4. A. Åkerman, Studien über den Kältetod und die Kälteresistenz der Pflanzen (Lund, 1927): Google Scholar
    P. Bachmetjew, Zeits. Wiss. Zool. 66, 521 (1899); Google Scholar
    P. Bachmetjew, 67, 529 (1900): Google Scholar
    E. Bahrmann, Zeits. f. Biol. 92, 366 (1932): Google Scholar
    H. Bartetzko, Jhrb. Wiss. Bot. 47, 57 (1910): Google Scholar
    A. T. Cameron and T. I. Brownlee, Am. J. Physiol. 7, 115 (1914): Google Scholar
    R. Chambers and H. P. Hale, Proc. Roy. Soc. B110, 336 (1932): Google ScholarCrossref
    H. W. Fischer, Beitr. z. Biol. d. Pflanz. 10, 133 (1911): , Google Scholar
    R. Höber, Physikalische Chemie der Zelle und der Gewebe, 6. Aufl. (Leipzig, 1926): Google Scholar
    H. D. Hooker, Proc. Am. Soc. Hort. Sci. 204 (1920): Google Scholar
    P. Jensen, Zeits. f. Allg. Physiol. 14, 320 (1913): Google Scholar
    H. H. Knight, Rep. State Ent. Minnesota 19, 50 (1922): Google Scholar
    T. Kodis, Ctbl. Physiol. 12, 593 (1898): Google Scholar
    T. Moran, Proc. Roy. Soc. B105, 177 (1930): Google Scholar
    T. F. Morrison, J. Gen. Physiol. 7, 741 (1924): Google ScholarCrossref
    R. Newton, J. Agr. Sci. 14, 178 (1924); , Google ScholarCrossref
    R. Newton, Res. Bull. Univ. of Alberta, Coll. of Agric. 1, 1 (1923): , Google Scholar
    N. M. Payne, Ecology 7, 99 (1926); Google ScholarCrossref
    N. M. Payne, J. Morphol. 43, 521 (1927): , Google ScholarCrossref
    R. Pictet, Rev. Sci. 52 (1893); , Google Scholar
    R. Pictet, Arch. Sci. Phys. et Nat. Per. 3, T. 30, 293 (1893): Google Scholar
    L. Pignorini, Annuar. Stat. bacol. Padova 46, 176 (1931): Google Scholar
    F. A. Pouchet, J. de l’Anat. 3, 1 (1866): Google Scholar
    R. Rein, Zeits. f. Naturwiss. 80, 1 (1908): Google Scholar
    W. Robinson, J. Agr. Res. 37, 749 (1929): Google Scholar
    J. T. Rosa, Proc. Am. Soc. Hort. Sci. 207 (1921); Google Scholar
    J. T. Rosa, Missouri Agr. Exp. Sta. Res. Bull. 48 (1921): Google Scholar
    K. Shibata, Mem. Tohoku Univ. 16, 91 (1935): Google Scholar
    R. Tigerstedt, Wint. Hdb. d. Vergl. Physiol. III/2, 1 (1910–14): Google Scholar
    R. Weigmann, Zeits. f. Wiss. Zool. 134, 641 (1929). Google Scholar
  5. 5. P. Bachmetjew, Mem. l’Acad. Imp. Sci. 10, 63 (1900); Google Scholar
    Temperaturverh. bei Insekten (Leipzig, 1901). Google Scholar
  6. 6. P. Becquerel, C.R. Acad. Sci. 181 (1925); Google Scholar
    P. Becquerel, 188, 1308 (1929); Google Scholar
    P. Becquerel, 190, 1134 (1930); Google Scholar
    P. Becquerel, 194, 1378 (1932); Google Scholar
    P. Becquerel, 194, 2158 (1932); Google Scholar
    P. Becquerel, 202, 978 (1936); Google Scholar
    Travaux Scientifiques (Paris, 1932): Google Scholar
    H. T. Brown and F. Escombe, Proc. Roy. Soc. London 62, 160 (1898): Google ScholarCrossref
    W. F. Busse, Bot. Gaz. 89, 169 (1930): , Google ScholarCrossref
    P. G. Rahm, Nat. Woch. 19, 619 (1920). , Google Scholar
  7. 7. P. G. Rahm, Versl. Akad. Amsterdam Afd. Natuurk. 30, 299 (1921); Google Scholar
    P. G. Rahm, Zeits. f. Allg. Physiol. 20, 1 (1923); Google ScholarCrossref
    P. G. Rahm, Verh. D. Zool. Ges. 106 (1924). , Google Scholar
  8. 8. E. F. Burton and W. F. Oliver, Proc. Roy. Soc. 153A, 166 (1935). Google ScholarCrossref
  9. 9. International Critical Tables, Vol. 1, p. 61, III, p. 220. Google Scholar
  10. 10. B. J. Luyet, Biodynamica 29, 1 (1937); Google Scholar
    B. J. Luyet, Phys. Rev. 53, 323 (1938). Google Scholar
  11. 11. R. Seyderhelm and W. Lampe, Dt. Med. Wochenschrift Nr. 32 (1923): Google Scholar
    R. Seyderhelm, Dt. Med. Wochenschrift Nr. 5 (1925). Google Scholar
  12. 12. K. Pietschmann, Arch. f. Protistenkunde 65, 3 (1929). Google Scholar
  13. © 1938 The American Institute of Physics.