Published Online: 22 December 2004
Journal of Mathematical Physics 3, 140 (1962); https://doi.org/10.1063/1.1703773
more...View Affiliations
  • Institute for Advanced Study, Princeton, New Jersey
New kinds of statistical ensemble are defined, representing a mathematical idealization of the notion of ``all physical systems with equal probability.'' Three such ensembles are studied in detail, based mathematically upon the orthogonal, unitary, and symplectic groups. The orthogonal ensemble is relevant in most practical circumstances, the unitary ensemble applies only when time‐reversal invariance is violated, and the symplectic ensemble applies only to odd‐spin systems without rotational symmetry. The probability‐distributions for the energy levels are calculated in the three cases. Repulsion between neighboring levels is strongest in the symplectic ensemble and weakest in the orthogonal ensemble. An exact mathematical correspondence is found between these eigenvalue distributions and the statistical mechanics of a one‐dimensional classical Coulomb gas at three different temperatures. An unproved conjecture is put forward, expressing the thermodynamic variables of the Coulomb gas in closed analytic form as functions of temperature. By means of general group‐theoretical arguments, the conjecture is proved for the three temperatures which are directly relevant to the eigenvalue distribution problem. The electrostatic analog is exploited in order to deduce precise statements concerning the entropy, or degree of irregularity, of the eigenvalue distributions. Comparison of the theory with experimental data will be made in a subsequent paper.
  1. 1. See, for example, L. S. Kisslinger and R. A. Sorensen, Kgl. Danske Videnskab. Selskab, Mat.‐Fys. Medd. 32, No. 9 (1960); Google Scholar
    M. Baranger, Phys. Rev. 120, 957 (1960). Google ScholarCrossref
  2. 2. J. L. Rosen, J. S. Desjardins, J. Rainwater, and W. W. Havens, Jr., Phys. Rev. 118, 687 (1960); Google ScholarCrossref
    J. L. Rosen, J. S. Desjardins, J. Rainwater, and W. W. Havens, Jr., 120, 2214 (1960)., Phys. Rev. , Google ScholarCrossref
  3. 3. E. P. Wigner, Ann. Math. 53, 36 (1951); Google ScholarCrossref
    E. P. Wigner, 62, 548 (1955); , Ann. Math. , Google ScholarCrossref
    E. P. Wigner, 65, 203 (1957); , Ann. Math. , Google ScholarCrossref
    E. P. Wigner, 67, 325 (1958)., Ann. Math. , Google ScholarCrossref
  4. 4. C. E. Porter and N. Rosenzweig, Suomalaisen Tiedeakat. Toimituksia, AVI, No. 44 (1960), Google Scholar
    and C. E. Porter and N. Rosenzweig, Phys. Rev. 120, 1698 (1960). Google ScholarCrossref
  5. 5. M. L. Mehta, Nuclear Phys. 18, 395 (1960); Google ScholarCrossref
    M. L. Mehta and M. Gaudin, Nuclear Phys. 18, 420 (1960); , Nucl. Phys. , Google ScholarCrossref
    M. Gaudin, Nuclear Phys. 25, 447 (1961)., Nucl. Phys. , Google ScholarCrossref
  6. 6. R. G. Thomas and C. E. Porter, Phys. Rev. 104, 483 (1956); Google ScholarCrossref
    I. I. Gurevich and M. I. Pevsner; Nuclear Phys. 2, 575 (1957). , Google ScholarCrossref
  7. 7. E. P. Wigner, Ann. Math. 65, 203 (1957). Google ScholarCrossref
  8. 8. F. Coester, Phys. Rev. 89, 619 (1953). Google ScholarCrossref
  9. 9. E. P. Wigner, Group Theory and its Application to the Quantum Mechanics of Atomic Spectra (English translated edition, Academic Press, Inc., New York, 1959), Chap. 26. Google Scholar
  10. 10. G. C. Wick, A. S. Wightman, and E. P. Wigner, Phys. Rev. 88, 101 (1952). Google ScholarCrossref
  11. 11. H. Weyl, The Classical Groups (Princeton University Press, Princeton, New Jersey, 1946), 2nd Ed., Chap. 6. Google Scholar
  12. 12. C. Chevalley, Theory of Lie Groups (Princeton University Press, Princeton, New Jersey, 1946), pp. 18–24. Google Scholar
    J. Dieudonné, Ergeb. d. Math. 5, (1955). Google Scholar
  13. 13. This theorem is presumably well known to the experts; but we are unable to find a reference to it in the mathematical literature. A nonrigorous “physicist’s proof” of it is given in Appendix A of this paper. Google Scholar
  14. 14. H. A. Kramers, Proc. Acad. Sci. Amsterdam 33, 959 (1930). Google Scholar
  15. 15. H. Weyl, reference 11, p. 188. Google Scholar
  16. 16. H. Weyl, reference 11, p. 197, Theorem 7.4C. Google Scholar
  17. 17. J. A. Shohat and J. D. Tamarkin, The Problem of Moments (The American Mathematical Society, Providence, Rhode Island, 1943), p. 8. Google Scholar
  18. 18. See E. C. Titchmarsh, Theory of Functions (Oxford University Press, Oxford, England, 1939), 2nd Ed., p. 186. Google Scholar
  19. 19. S. Ramanujan, Collected Papers (Cambridge University Press, Cambridge, England, 1927), p. 26 of the Introductory Notice. Google Scholar
    The same equation appears as Eq. (1.1) in G. H. Hardy, Ramanujan (Cambridge University Press, Cambridge, England, 1940), p. 7. Google Scholar
  20. 20. By private communication. See, also, F. Morley, Proc. London Math. Soc. 34, 397 (1902). Google Scholar
  21. 21. A. C. Dixon, Messenger of Math. 20, 79 (1891). Google Scholar
  22. 22. A. C. Dixon, Proc. London Math. Soc. 35, 285 (1903). Google Scholar
  23. 23. J. Dougall, Proc. Edinburgh Math. Soc. 25, 114 (1907). Google ScholarCrossref
  24. 24. C. E. Shannon, Bell System Tech. J. 27, 379 and (1948). Google ScholarCrossref
    Reprinted in book from, C. E. Shannon and W. Weaver, The Mathematical theory of communication (University of Illinois, Urbana, Illinois, 1949). , Google Scholar
  25. © 1962 The American Institute of Physics.