No Access Submitted: 20 January 2004 Accepted: 30 January 2004 Published Online: 05 April 2004
J. Chem. Phys. 120, 7464 (2004); https://doi.org/10.1063/1.1688754
more...View Affiliations
  • Department of Chemistry and Biochemistry, National Chung Cheng University, Ming-Hsiung, Chiayi-621, Taiwan
View Contributors
  • Ajay Chaudhari
  • Shyi-Long Lee
This study focuses on the conformational analysis of ethylene glycol–(water)n (n=1–3) complex by using density functional theory method and the basis set 6-311++G*. Different conformers are reported and the basis set superposition error corrected total energy is −306.767 5171, −383.221 3135, and −459.694 1528 for lowest energy conformer with 1, 2, and 3 water molecules, respectively, with corresponding binding energy −7.75, −15.43, and −36.28 kcal/mol. On applying many-body analysis it has been found that relaxation energy, two-body, three-body energy have significant contribution to the binding energy for ethylene glycol–(water)3 complex whereas four-body energies are negligible. The most stable conformers of ethylene glycol–(water)n complex are the cyclic structures in which water molecules bridge between the two hydroxyl group of ethylene glycol.
  1. 1. P. Bultinck, A. Goeminne, and D. V. Vondel, J. Mol. Struct. 357, 19 (1995). Google ScholarCrossref
  2. 2. P. I. Nagy, W. J. Dunn III, G. Alagona, and C. Ghio, J. Am. Chem. Soc. 114, 4752 (1992). Google ScholarCrossref
  3. 3. M. A. Murckoand R. A. Dipaola, J. Am. Chem. Soc. 114, 10010 (1992). Google ScholarCrossref
  4. 4. T. Oie, I. A. Topol, and S. K. Burt, J. Phys. Chem. 98, 1121 (1994). Google ScholarCrossref
  5. 5. T. S. Yeh, Y. P. Chang, and T. M. Su, J. Phys. Chem. 98, 8921 (1994). Google ScholarCrossref
  6. 6. P. I. Nagy, W. J. Dunn III, G. Alagona, and C. Ghio, J. Am. Chem. Soc. 113, 6719 (1991). Google ScholarCrossref
  7. 7. C. J. Cramerand D. G. Truhlar, J. Am. Chem. Soc. 116, 3892 (1994). Google ScholarCrossref
  8. 8. S. Vazquez, R. A. Mosquera, M. A. Rios, and C. Van Alsenoy, J. Mol. Struct. 50, 149 (1988). Google ScholarCrossref
  9. 9. S. Vazquez, R. A. Mosquera, M. A. Rios, and C. Van Alsenoy, J. Mol. Struct. 53, 323 (1989). Google ScholarCrossref
  10. 10. O. Bastiansen, Acta Chem. Scand. (1947-1973) 3, 415 (1949). Google ScholarCrossref
  11. 11. P. J. Kruegerand H. D. Mettee, J. Mol. Spectrosc. 18, 131 (1965). Google ScholarCrossref
  12. 12. A. Miyake, J. Am. Chem. Soc. 82, 3040 (1960). Google ScholarCrossref
  13. 13. W. K. Busfield, M. P. Ennis, and I. J. McEwen, Spectrochim. Acta, Part A 29, 1259 (1973). Google ScholarCrossref
  14. 14. P. Buckleyand P. A. Giguere, Can. J. Chem. 45, 397 (1967). Google ScholarCrossref
  15. 15. O. B. Zubkovaand A. N. Shabadash, Zh. Prikl. Spektrosk. 14, 874 (1971). Google Scholar
  16. 16. O. B. Zubkova, L. A. Gibov, and A. N. Shabadash, Zh. Prikl. Spektrosk. 16, 306 (1972). Google Scholar
  17. 17. H. Takeuchiand M. Tasumi, Chem. Phys. 77, 21 (1983). Google ScholarCrossref
  18. 18. C. G. Parkand M. Tasumi, J. Phys. Chem. 95, 2757 (1991). Google ScholarCrossref
  19. 19. E. Walder, A. Bauder, and H. H. Gunthard, Chem. Phys. 51, 223 (1980). Google ScholarCrossref
  20. 20. W. Caminatiand G. Corbelli, J. Mol. Spectrosc. 90, 572 (1981). Google ScholarCrossref
  21. 21. K. M. Marstokkand H. Mihblendal, J. Mol. Struct. 22, 301 (1974). Google ScholarCrossref
  22. 22. K. G. R. Pachlerand P. L. Wessels, J. Mol. Struct. 6, 471 (1970). Google ScholarCrossref
  23. 23. P. Pruettiangkura, S. Ho, and M. Schwartz, Spectrosc. Lett. 12, 679 (1979). Google ScholarCrossref
  24. 24. G. Chidichimo, D. Imbardelli, M. Longeri, and A. Saupe, Mol. Phys. 65, 1143 (1988). Google ScholarCrossref
  25. 25. M. Zahn, Y. Ohki, D. B. Fenneman, R. J. Gripshower, and V. H. Gehman, Proc. IEEE 74, 1182 (1986). Google ScholarCrossref
  26. 26. N. Shinyashiki, N. Ashaka, S. Mashimo, and S. Yagihara, J. Chem. Phys. 93, 760 (1990). Google ScholarScitation
  27. 27. N. Shinyashiki, S. Sudo, W. Abe, and S. Yagihara, J. Chem. Phys. 109, 9843 (1998). Google ScholarScitation
  28. 28. N. Shinyashiki, I. Arita, S. Yagihara, and S. Mashimo, J. Phys. Chem. B 102, 3249 (1998). Google ScholarCrossref
  29. 29. N. Shinyashikiand S. Yagihara, J. Phys. Chem. B 103, 4481 (1999). Google ScholarCrossref
  30. 30. U. Sahaand R. Ghosh, J. Phys. D 32, 820 (1999). Google ScholarCrossref
  31. 31. M. J. Frisch, G. W. Trucks, H. B. Schlegel et al., GAUSSIAN 98, Rev. A.6, Gaussian, Inc., Pittsburgh, PA, 1998. Google Scholar
  32. 32. A. B. Becke, Phys. Rev. A 38, 3098 (1988). Google ScholarCrossref
  33. 33. A. B. Becke, J. Chem. Phys. 98, 5648 (1993). Google ScholarScitation
  34. 34. A. B. Becke, J. Chem. Phys. 107, 8554 (1997). Google ScholarScitation
  35. 35. H. L. Schmiderand A. B. Becke, J. Chem. Phys. 108, 9624 (1998). Google ScholarScitation
  36. 36. Z. Latajkaand Y. Bouteiller, J. Chem. Phys. 101, 9793 (1994). Google ScholarScitation
  37. 37. K. Muller-Dethlefsand P. Hobza, Chem. Rev. 100, 143 (2000). Google ScholarCrossref
  38. 38. M. J. Frisch, A. C. Scheiner, H. F. Schaefer, and J. S. Binkley, J. Chem. Phys. 82, 4194 (1984). Google ScholarScitation
  39. 39. G. Chung, O. Kwon, and Y. Kwon, J. Phys. Chem. A 102, 2381 (1998). Google ScholarCrossref
  40. 40. M. Masellaand J. P. Flament, J. Chem. Phys. 110, 7245 (1999). Google ScholarScitation
  41. 41. B. J. Lynch, Y. Zhao, and D. G. Truhlar, J. Phys. Chem. A 107, 1384 (2003). Google ScholarCrossref
  42. 42. E. Ruckenstein, I. L. Shulgin, and J. L. Tilson, J. Phys. Chem. A 107, 2289 (2003). Google ScholarCrossref
  43. 43. C. H. Langleyand N. L. Allinger, J. Phys. Chem. A 107, 5208 (2003). Google ScholarCrossref
  44. 44. W. Wang, X. Pu, W. Zhenget al., J. Mol. Struct. 626, 127 (2003). Google ScholarCrossref
  45. 45. S. Aloisio, P. E. Hintze, and V. Vaida, J. Phys. Chem. A 106, 363 (2003). Google ScholarCrossref
  46. 46. M. J. Frisch, J. E. DelBene, J. S. Binkley, and H. F. Schaefer III, J. Chem. Phys. 84, 2279 (1986). Google ScholarScitation
  47. 47. K. Countinho, N. Saavedra, and S. Canuto, J. Mol. Struct. 466, 69 (1999). Google ScholarCrossref
  48. 48. J. J. Novoaand C. Sosa, J. Phys. Chem. 99, 15837 (1995). Google ScholarCrossref
  49. 49. S. F. Boysand F. Bernardi, Mol. Phys. 19, 553 (1970). Google ScholarCrossref
  50. 50. P. Valironand I. Mayer, Chem. Phys. Lett. 275, 46 (1997). Google ScholarCrossref
  51. 51. J. C. Whiteand E. R. Davidson, J. Chem. Phys. 93, 8029 (1990). Google ScholarScitation
  52. 52. D. W. Woo, Bull. Korean Chem. Soc. 22, 693 (2001). Google Scholar
  53. 53. S. S. Xantheas, J. Chem. Phys. 100, 7523 (1994). Google ScholarScitation
  54. 54. S. S. Xantheas, Chem. Phys. 258, 225 (2000). Google ScholarCrossref
  55. 55. D. Hankins, J. W. Moskowitz, and F. H. Stillinger, J. Chem. Phys. 53, 4544 (1970). Google ScholarScitation
  56. 56. B. J. Mhin, J. Kim, S. Lee, J. Y. Lee, and K. S. Kim, J. Chem. Phys. 100, 4484 (1994). Google ScholarScitation
  57. 57. J. Kim, S. Lee, S. J. Cho, B. J. Mhin, and K. S. Kim, J. Chem. Phys. 102, 839 (1995). Google ScholarScitation
  1. © 2004 American Institute of Physics.