No Access Submitted: 12 April 1973 Published Online: 09 October 2003
Appl. Phys. Lett. 23, 171 (1973); https://doi.org/10.1063/1.1654847
more...View Affiliations
  • Bell Telephone Laboratories, Murray Hill, New Jersey 07974
View Contributors
  • Akira Hasegawa
  • Frederick Tappert
Theoretical calculations supported by numerical simulations show that utilization of the nonlinear dependence of the index of refraction on intensity makes possible the transmission of picosecond optical pulses without distortion in dielectric fiber waveguides with group velocity dispersion. In the case of normal dispersion (∂2ω/∂k2 < 0) discussed here [the case of anomalous dispersion (∂2ω/∂k2 > 0) was discussed in an earlier letter], the stationary pulse is a ``dark'' pulse or envelope shock. Numerical simulations show that such pulses are stable under the influence of small perturbations, white noise, or absorption. Important considerations relating to the practical applications of both ``bright'' and ``dark'' pulses are also discussed.
  1. 1. A. Hasegawa and F. Tappert, Appl. Phys. Lett. 23, 142 (1973). Google ScholarScitation, ISI
  2. 2. D. Gloge, Appl. Opt. 10, 2442 (1971). Google ScholarCrossref, ISI
  3. 3. L. A. Ostroviskii, Zh. Eksp. Teor. Fiz. 54, 1235 (1968) Google Scholar
    [L. A. Ostroviskii, Sov. Phys.‐JETP 27, 660 (1968)]. Google Scholar
  4. 4. V. L. Ginzburg and L. P. Pitaevskii, Zh. Eksp. Teor. Fiz. 34, 1240 (1958) Google Scholar
    [V. L. Ginzburg and L. P. Pitaevskii, Sov. Phys.‐JETP 7, 858 (1958)]. Google Scholar
  5. 5. H. Hasegawa and F. Tappert (unpublished); Google Scholar
    a similar analysis has recently been given by T. Tsuzuki (unpublished). Google Scholar
  6. 6. T. Taniuti and H. Washimi, Phys. Rev. Lett. 21, 209 (1968); Google ScholarCrossref, ISI
    A. Hasegawa, Phys. Fluids 15, 870 (1972). , Google ScholarScitation, ISI
  7. 7. E. P. Ippen and R. H. Stolen, Appl. Phys. Lett. 21, 539 (1972). Google ScholarScitation, ISI
  8. 8. R. G. Smith, Appl. Opt. 11, 2489 (1972). Google ScholarCrossref, ISI
  1. © 1973 American Institute of Physics.