No Access Submitted: 15 November 2002 Accepted: 16 February 2003 Published Online: 09 May 2003
Journal of Applied Physics 93, 6177 (2003); https://doi.org/10.1063/1.1565827
more...View Affiliations
  • Centro Atómico Bariloche and Instituto Balseiro, Comisión Nacional de Energı́a Atómica and Universidad Nacional de Cuyo, 8400-San Carlos de Bariloche, Rı́o Negro - Argentina
View Contributors
  • M. Sirena
  • N. Haberkorn
  • L. B. Steren
  • J. Guimpel
We have studied the interlayer coupling and the magnetoresistant effect of La0.55Sr0.45MnO3/ La0.67Ca0.33MnO3 structures. Magnetization loops, measured in La0.55Sr0.45MnO3/La0.67Ca0.33MnO3/La0.55Sr0.45MnO3 trilayers, indicate that there is a ferromagnetic coupling of the La0.55Sr0.45MnO3 layers across the La0.67Ca0.33MnO3 spacer up to room temperature, even above the Curie temperature of the La0.67Ca0.33MnO3 layers. However, magnetization versus temperature curves present signatures of the magnetic ordering of both compounds. No extrinsic magnetoresistance associated with the multilayered structure was observed in the whole temperature range due to the presence of the interlayer ferromagnetic coupling.
  1. 1. R. V. Helmholtet al., Phys. Rev. Lett. 71, 2331 (1993). Google ScholarCrossref
  2. 2. Y. Tokura, A. Urushibara, Y. Moritomo, T. Arima, A. Asamitsu, G. Kido, and N. Furukawa, J. Phys. Soc. Jpn. 63, 3931 (1994). Google ScholarCrossref
  3. 3. M. Viretet al., Europhys. Lett. 39, 545 (1997). Google ScholarCrossref
  4. 4. J. M. De Teresa, A. Barthélémy, A. Fert, J. P. Contour, R. Lyonnet, F. Montaigne, P. Seneor, and A. Vaurés, Phys. Rev. Lett. 82, 4288 (1999). Google ScholarCrossref
  5. 5. M. Julliere, Phys. Lett. 54, 225 (1975). Google ScholarCrossref
  6. 6. M. Bibes, Ll. Balcells, S. Valencia, S. Sena, B. Martinez, and J. Fontcuberta, J. Appl. Phys. 89, 6686 (2001). Google ScholarScitation
  7. 7. B. Steren, M. Sirena, and J. Guimpel, J. Magn. Magn. Mater. 211, 28 (2000). Google ScholarCrossref
  8. 8. A. Ramirez, J. Phys.: Condens. Matter 9, 8171 (1997); Google ScholarCrossref
    J. M. Coey, M. Viret, and S. Von Molnar, Adv. Phys. 48, 167 (1999). , Google ScholarCrossref
  9. 9. Ivan K. Schuller, Phys. Rev. Lett. 44, 1597 (1980); Google ScholarCrossref, ISI
    W. Sevenhans, M. Gijs, Y. Bruynseraede, H. Homma, and I. K. Schuller, Phys. Rev. B 34, 5955 (1986); , Google ScholarCrossref, ISI
    E. Fullerton, I. K. Schuller, H. Vanderstraeten, and Y. Bruynseraede, Phys. Rev. B 45, 9292 (1992); , Google ScholarCrossref, ISI
    D. M. Kelly, E. E. Fullerton, J. Santamaria, and I. K. Schuller, Scr. Metall. Mater. 33, 1603 (1995). , Google ScholarCrossref
  10. 10. M. Sirena, L. Steren, and J. Guimpel, Thin Solid Films 373, 102 (2000). Google ScholarCrossref, ISI
  11. 11. C. Zenner, Phys. Rev. 81, 440 (1950). Google ScholarCrossref
  12. 12. The Curie temperature of the system is defined as the temperature where the maximum slope |(∂M/∂T)| is found. Google Scholar
  13. 13. L. B. Steren, M. Sirena, and J. Guimpel, Phys. Rev. B 65, 094431 (2002). Google ScholarCrossref
  14. 14. B. Martinez, J. Fontcuberta, A. Seffar, J. Garcia Muñoz, S. Piñol, and X. Obrador, Phys. Rev. B 54, 10001 (1996). Google ScholarCrossref
  15. 15. H. Hwang, S. W. Cheong, N. P. Ong, and Batlogg, Phys. Rev. Lett. 77, 2041 (1996). Google ScholarCrossref, ISI
  1. © 2003 American Institute of Physics.