No Access Submitted: 22 August 2002 Accepted: 19 November 2002 Published Online: 15 January 2003
Appl. Phys. Lett. 82, 400 (2003); https://doi.org/10.1063/1.1536264
more...View Contributors
  • B. J. Coppa
  • R. F. Davis
  • R. J. Nemanich
Reverse bias current–voltage measurements of ∼100-μm-diameter gold Schottky contacts deposited on as-received, n-type ZnO(0001̄) wafers and those exposed for 30 min to a remote 20% O2/80% He plasma at 525±20 °C and cooled either in vacuum from 425 °C or the unignited plasma gas have been determined. Plasma cleaning resulted in highly ordered, stoichiometric, and smooth surfaces. Contacts on as-received material showed μA leakage currents and ideality factors >2. Contacts on plasma-cleaned wafers cooled in vacuum showed ∼36±1 nA leakage current to −4 V, a barrier height of 0.67±0.05 eV, and an ideality factor of 1.86±0.05. Cooling in the unignited plasma gas coupled with a 30 s exposure to the plasma at room temperature resulted in decreases in these parameters to ∼20 pA to −7 V, 0.60±0.05 eV, and 1.03±0.05, respectively. Differences in the measured and theoretical barrier heights indicate interface states. (0001) and (0001̄) are used in this letter to designate the polar zinc- and oxygen-terminated surfaces, respectively.
  1. 1. D. C. Look, Mater. Sci. Eng., B 80, 383 (2001). Google ScholarCrossref, ISI
  2. 2. F. D. Auret, S. A. Goodman, M. Hayes, M. J. Legodi, H. A. van Laarhoven, and D. C. Look, J. Phys.: Condens. Matter 13, 1 (2001). Google ScholarCrossref
  3. 3. H. Fabricius, T. Skettrup, and Paul Bisgaard, Appl. Opt. 25, 2764 (1986). Google ScholarCrossref, ISI
  4. 4. Y. Liu, C. R. Gorla, S. Liang, N. Emanetoglu, Y. Lu, H. Shen, and M. Wraback, J. Electron. Mater. 29, 69 (2000). Google ScholarCrossref, ISI
  5. 5. S. Liang, H. Sheng, Y. Liu, Z. Huo, Y. Lu, and H. Shen, J. Cryst. Growth 225, 110 (2001). Google ScholarCrossref
  6. 6. W. Göpel, L. J. Brillson, and C. F. Brucker, J. Vac. Sci. Technol. 17, 894 (1980). Google ScholarCrossref
  7. 7. T. Yamamotoand K. Yoshida, Jpn. J. Appl. Phys. 38, L166 (1999). Google ScholarCrossref
  8. 8. M. Joseph, H. Tabata, and T. Kawai, Jpn. J. Appl. Phys. 38, L1205 (1999). Google ScholarCrossref
  9. 9. R. C. Nevilleand C. A. Mead, J. Appl. Phys. 41, 3795 (1970). Google ScholarScitation, ISI
  10. 10. H. Sheng, S. Muthukumar, N. W. Emanetoglu, and Y. Lu, Appl. Phys. Lett. 80, 2132 (2002). Google ScholarScitation
  11. 11. R. P. Vasquez, B. F. Lewis, and F. J. Grunthaner, Appl. Phys. Lett. 42, 293 (1983). Google ScholarScitation, ISI
  12. 12. M. Yamadaand Y. Ide, Jpn. J. Appl. Phys. 33, L671 (1994). Google ScholarCrossref
  13. 13. C. M. Rouleauand R. M. Park, J. Appl. Phys. 73, 4610 (1993). Google ScholarScitation
  14. 14. M. Mintasand G. W. Filby, Z. Naturforsch. A 36A, 140 (1981). Google ScholarCrossref
  15. 15. D. C. Look, D. C. Reynolds, J. R. Sizelove, R. L. Jones, C. W. Litton, G. Cantwell, and W. C. Harsch, Solid State Commun. 105, 399 (1998). Google ScholarCrossref, ISI
  16. 16. G. Heilandand P. Kunstmann, Surf. Sci. 13, 72 (1969). Google ScholarCrossref
  17. 17. M. Nakagawaand H. Mitsudo, Surf. Sci. 175, 157 (1986). Google ScholarCrossref
  18. 18. E. Arijs, F. Cardon, and W. Maenhout-Van Der Vorst, Surf. Sci. 17, 387 (1969). Google ScholarCrossref
  19. 19. L. Lagowski, E. S. Sproles, Jr., and H. C. Gatos, J. Appl. Phys. 48, 3566 (1977). Google ScholarScitation
  20. 20. S. M. Sze, Physics of Semiconductors Devices (Wiley, New York, 1981), p. 849. Google Scholar
  21. 21. B. J. Coppa (unpublished). Google Scholar
  22. 22. K. M. Tracy, Ph.D. dissertation, N. C. State University, Raleigh, NC, 2000. Google Scholar
  1. © 2003 American Institute of Physics.