ABSTRACT
The quasi-Gaussian entropy (QGE) theory employs the fact that a free-energy change can be written as the moment-generating function of the appropriate probability distribution function of macroscopic fluctuations of an extensive property. By modeling this distribution, one obtains a model of free energy and resulting thermodynamics as a function of one state variable. In this paper the QGE theory has been extended towards theoretical models or equations of state (EOS’s) of the thermodynamics of semiclassical systems as a function of two state variables. Two “monovariate” QGE models are combined in the canonical ensemble: one based on fluctuations of the excess energy (the confined gamma state giving the temperature dependence) and the other based on fluctuations of the reduced electromagnetic moment [various models as derived in the preceding paper [Apol, Amadei, and Di Nola, J. Chem. Phys. 116, 4426 (2002)], giving the external field dependence]. This provides theoretical EOS’s for fluid systems as a function of both temperature and electromagnetic field. Special limits of these EOS’s are considered: the general weak-field EOS and the limit to a Curie’s law behavior. Based on experimental data of water and simulation data using the extended simple point charge (SPC/E) water model at 45.0 and 55.51 mol/dm3, the specific EOS based on a relatively simple combination of the confined gamma state model with a discrete uniform state field model accurately reproduces the dielectric properties of water at constant density, as the temperature dependence of the weak-field dielectric constant for gases and liquids, and the field dependence of the dielectric constant of liquids.
- 1. A. Amadei, M. E. F. Apol, and H. J. C. Berendsen, J. Chem. Phys. 106, 1893 (1997). Google ScholarScitation
- 2. A. Amadei, M. E. F. Apol, and H. J. C. Berendsen, J. Chem. Phys. 109, 3004 (1998). Google ScholarScitation
- 3. M. E. F. Apol, A. Amadei, H. J. C. Berendsen, and A. Di Nola, J. Chem. Phys. 111, 4431 (1999). Google ScholarScitation
- 4. M. E. F. Apol, A. Amadei, H. J. C. Berendsen, and A. Di Nola (unpublished). Google Scholar
- 5. M. E. F. Apol, A. Amadei, and H. J. C. Berendsen, J. Chem. Phys. 109, 3017 (1998). Google ScholarScitation
- 6. M. E. F. Apol, A. Amadei, and A. Di Nola, J. Chem. Phys. 116, 4426 (2002), preceding paper. Google ScholarScitation
- 7. D. Roccatano, A. Amadei, M. E. F. Apol, A. Di Nola, and H. J. C. Berendsen, J. Chem. Phys. 109, 6358 (1998). Google ScholarScitation
- 8. A. Amadei, M. E. F. Apol, G. Chillemi, H. J. C. Berendsen, and A. Di Nola, Mol. Phys. 96, 1469 (1999). Google ScholarCrossref
- 9. A. Amadei, G. Chillemi, M. A. Ceruso, A. Grottesi, and A. Di Nola, J. Chem. Phys. 112, 9 (2000). Google ScholarScitation
- 10. L. D. Landau and E. M. Lifshitz, Statistical Physics, Part 1, 3rd ed. (Pergamon, Oxford, 1980). Google Scholar
- 11. L. D. Landau and E. M. Lifshitz, Statistical Physics, Part 2, 3rd ed. (Pergamon, Oxford, 1980). Google Scholar
- 12. Note that the classical potential energy and the mass tensors for a given configuration, as well as the integration limits, are in principle different for different quantum vibrational states. However, in Eq. (2) such differences can be in general safely neglected. It should be also noted that at zero field, Eq. (2) reduces to the usual expression [Eqs. (2) and (3) of Ref. 1], valid for semirigid molecules, if is constant over the configurations. Hence the integral over the momenta can be considered independent of the coordinates, although the integrand generally is not. In that case the partition function can be factorized into two independent integrals: one over the coordinates involving the potential energy and another over the momenta involving the kinetic energy (Refs. 1, 10, and 11). Google Scholar
- 13. N. I. Johnson, S. Kotz, and A. W. Kemp, Univariate Discrete Distributions, 2nd ed. (Wiley, New York, 1992). Google Scholar
- 14. A. Stuart and J. K. Ord, Kendall’s Advanced Theory of Statistics, 5th ed. (Griffin, London, 1987), Vol. 1. Google Scholar
- 15. M. Aschi, R. Spezia, A. Di Nola, and A. Amadei, Chem. Phys. Lett. 344, 374 (2001). Google ScholarCrossref
- 16. M. Raynaud, C. Reynaud, Y. Ellinger, G. Hennico, and J. Delhalle, Chem. Phys. 142, 191 (1990). Google ScholarCrossref
- 17. C. Kittel, Introduction to Solid State Physics, 5th ed. (Wiley, New York, 1976). Google Scholar
- 18. B. I. Bleaney and B. Bleaney, Electricity and Magnetism, 3rd ed. (Oxford University Press, Oxford, 1976). Google Scholar
- 19. P. W. Selwood, Magnetochemistry, 2nd ed. (Interscience, New York, 1956). Google Scholar
- 20. K.-H. Hellwege, Einführung in die Festkörperphysik (Springer-Verlag, Berlin, 1976). Google Scholar
- 21. Note that a more general Gaussian expression of treating also the effect of sample shape, is given by Eq. (46) where in that case Google Scholar
- 22. H. J. C. Berendsen, J. R. Grigera, and T. P. Straatsma, J. Phys. Chem. 91, 6269 (1987). Google ScholarCrossref, ISI
- 23. D. P. Fernández, A. R. H. Goodwin, E. W. Lemmon, J. M. H. Levelt Sengers, and R. C. Williams, J. Phys. Chem. Ref. Data 26, 1125 (1997). Google ScholarScitation, ISI
- 24. W. Wagner and A. Kruse, Properties of Water and Steam (Springer-Verlag, Berlin, 1998). Google Scholar
- 25. D. P. Fernández, Y. Mulev, A. R. H. Goodwin, and J. M. H. Levelt Sengers, J. Phys. Chem. Ref. Data 24, 33 (1995). Google ScholarScitation, ISI
- 26. A. Amadei, Ph.D. thesis, Rijksuniversiteit Groningen, The Netherlands, 1998. Also available from http://docserver.ub.rug.nl/eldoc/dis/science/a.amadei/ Google Scholar
- 27. P. Schiebener, J. Straub, J. M. H. Levelt Sengers, and J. S. Gallagher, J. Phys. Chem. Ref. Data 19, 677 (1990). Google ScholarScitation
- 28. P. Schiebener, J. Straub, J. M. H. Levelt Sengers, and J. S. Gallagher, J. Phys. Chem. Ref. Data 19, 1617 (1990). Google ScholarScitation
- 29. F. Booth, J. Chem. Phys. 19, 391 (1951). Google ScholarScitation, ISI
- 30. F. Booth, J. Chem. Phys. 19, 1327 (1951). Google ScholarScitation, ISI
- 31. F. Booth, J. Chem. Phys. 19, 1615 (1951). Google ScholarScitation, ISI
- 32. H. A. Kolodziej, G. Parry Jones, and M. Davies, J. Chem. Soc., Faraday Trans. 2 71, 269 (1975). Google ScholarCrossref
- 33. Y. Marcus, The Properties of Solvents (Wiley, New York, 1998). Google Scholar
- 34. Y. Marcusand G. Hefter, J. Solution Chem. 28, 575 (1999). Google ScholarCrossref
- 35. I.-C. Yehand M. L. Berkowitz, J. Chem. Phys. 110, 7935 (1999). Google ScholarScitation, ISI
- 36. D. van der Spoel, P. J. van Maaren, and H. J. C. Berendsen, J. Chem. Phys. 108, 10220 (1998). Google ScholarScitation, ISI
- 37. S.-B. Zhu, S. Sing, and G. W. Robinson, Adv. Chem. Phys. 85, 627 (1994). Google Scholar
- 38. T. Darden, D. York, and L. Pedersen, J. Chem. Phys. 98, 10089 (1993). Google ScholarScitation, ISI
- 39. U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee, and L. G. Pederson, J. Chem. Phys. 103, 8577 (1995). Google ScholarScitation, ISI
- 40. S. W. de Leeuw, J. W. Perram, and E. R. Smith, Proc. R. Soc. London, Ser. A 373, 27 (1980). Google ScholarCrossref, ISI
- 41. M. Neumann, Mol. Phys. 50, 841 (1983). Google ScholarCrossref, ISI
- 42. H. J. C. Berendsen, D. van der Spoel, and R. van Drunen, Comput. Phys. Commun. 91, 43 (1995). Google ScholarCrossref, ISI
- 43. E. Lindahl, B. Hess, and D. van der Spoel, J. Mol. Model. [Electronic Publication] 7, 306 (2001). Google ScholarCrossref, ISI
- 44. D. van der Spoel, A. R. van Buuren, E. Apol et al., Gromacs User Manual Version 3.0 (Nijenborgh, Groningen, The Netherlands, 2001). Internet: http://www.gromacs.org, Google Scholar
- 45. H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. Di Nola, and J. R. Haak, J. Chem. Phys. 81, 3684 (1984). Google ScholarScitation, ISI
- 46. D. J. Evansand G. P. Morris, Comput. Phys. Rep. 1, 297 (1984). Google ScholarCrossref
- 47. T. Morishita, J. Chem. Phys. 113, 2976 (2000). Google ScholarScitation
- 48. S. Miyamotoand P. A. Kollman, J. Comput. Chem. 13, 952 (1992). Google ScholarCrossref, ISI
- 49. M. P. Allen and D. J. Tildesly, Computer Simulation of Liquids (Oxford University Press, Oxford, 1989). Google Scholar
- 50. T. P. Straatsma, H. J. C. Berendsen, and A. J. Stam, Mol. Phys. 57, 89 (1986). Google ScholarCrossref
- 51. M. Bishopand S. Frinks, J. Phys. Chem. 87, 3675 (1987). Google ScholarScitation
- 52. I. M. Svishchevand P. G. Kusalik, J. Phys. Chem. 98, 728 (1994). Google ScholarCrossref, ISI
- 53. L. Onsager, J. Am. Chem. Soc. 58, 1486 (1936). Google ScholarCrossref
- 54. D. C. Grahame, J. Chem. Phys. 21, 1054 (1953). Google ScholarScitation, ISI
- 55. W. Feller, An Introduction to Probability Theory and Its Application, 3rd ed. (Wiley, New York, 1968), Vol. 1. Google Scholar
- 56. A. Sauland W. Wagner, J. Phys. Chem. Ref. Data 18, 1537 (1989). Google ScholarScitation, ISI
Please Note: The number of views represents the full text views from December 2016 to date. Article views prior to December 2016 are not included.