No Access Submitted: 26 March 2001 Accepted: 14 May 2001 Published Online: 02 August 2001
Journal of Applied Physics 90, 1761 (2001); https://doi.org/10.1063/1.1384508
more...View Contributors
  • Ming S. Liu
  • Les A. Bursill
  • Steven Prawer
The behavior of longitudinal and transverse optical phonons in hexagonal AlxGa1−xN is derived theoretically and experimentally as a function of the concentration x(0⩽x⩽1). The theoretical approach is based on a modified random element isodisplacement model which considers the interactions with the nearest neighbor and second neighbor atoms. We find “one-mode” behavior in AlxGa1−xN in which the phonon frequency in general varies continuously and approximately linearly with x. The theoretical simulations are in good agreement with Raman scattering experiments, which also reveal that both the linewidth and intensity of the optical phonons strongly depend on the concentration.
  1. 1. S. Nakamura, T. Mukai, and M. Senoh, Appl. Phys. Lett. 64, 1687 (1994). Google ScholarScitation, ISI
  2. 2. See, e.g., S. Nakamura and G. Fasol, The Blue Laser Diode: GaN Based Light Emitters and Lasers (Springer, Berlin, 1997). Google Scholar
  3. 3. I. Akasaki, S. Kamiyama, T. Detchprohm, T. Takeuchi, and H. Amano, MRS Internet J. Nitride Semicond. Res. 5S1, W6.8 (2000). Google Scholar
  4. 4. S. Striteand H. Morkoc, J. Vac. Sci. Technol. B 10, 1237 (1992). Google ScholarCrossref, ISI
  5. 5. I. F. Changand S. S. Mitra, Phys. Rev. 172, 924 (1968). Google ScholarCrossref
  6. 6. L. Genzel, T. P. Martin, and C. H. Perry, Phys. Status Solidi B 62, 83 (1974). Google ScholarCrossref
  7. 7. D. L. Peterson, A. Petrou, W. Giriat, A. K. Ramdas, and S. Rodriguez, Phys. Rev. B 33, 1160 (1986). Google ScholarCrossref
  8. 8. P. D. Lao, Y. Guo, G. G. Siu, and S. C. Shen, Phys. Rev. B 48, 11701 (1993). Google ScholarCrossref
  9. 9. J. Avendano-Lopez, F. L. Castillo-Alvarado, A. Escamilla-Esquivel, G. Contreras-Puente, J. Ortiz-Lopez, and O. Zelaya-Angel, Solid State Commun. 100, 33 (1996). Google ScholarCrossref
  10. 10. K. Hayashi, K. Itoh, N. Sawaki, and I. Akasaki, Solid State Commun. 77, 115 (1991). Google ScholarCrossref
  11. 11. D. Behr, R. Niebuhr, J. Wagner, K. H. Bachem, and U. Kaufmann, Appl. Phys. Lett. 70, 363 (1997). Google ScholarScitation, ISI
  12. 12. L. Bergman, M. D. Bremser, W. G. Perry, R. F. Davis, M. Dutta, and R. J. Nemanich, Appl. Phys. Lett. 71, 2157 (1997). Google ScholarScitation
  13. 13. F. Demangeot, J. Groenen, J. Frandon, M. A. Renucci, O. Briot, S. Ruffenach-Chur, and R.-L. Aulombard, MRS Internet J. Nitride Semicond. Res. 2, 40 (1997). Google ScholarCrossref
  14. 14. A. Cros, H. Angerer, R. Handschuh, O. Ambacher, and M. Stutzmann, MRS Internet J. Nitride Semicond. Res. 2, 43 (1997); Google ScholarCrossref
    A. Cros, H. Angerer, R. Handschuh, O. Ambacher, and M. Stutzmann, Solid State Commun. 104, 35 (1997). , Google ScholarCrossref
  15. 15. H. W. Verleurand A. S. Barker, Phys. Rev. 155, 750 (1967). Google ScholarCrossref
  16. 16. Z. Sitar, M. J. Paisley, B. Yan, and R. F. Davis, Mater. Res. Soc. Symp. Proc. 162, 537 (1990). Google ScholarCrossref
  17. 17. M. S. Liu, Ph.D. thesis, The University of Melbourne, Australia, 2000. Google Scholar
  18. 18. M. S. Liu, L. A. Bursill, and S. Prawer, Mod. Phys. Lett. B 12, 443 (1998). Google ScholarCrossref
  19. 19. S. Yoshida, S. Misawa, and S. Gonda, J. Appl. Phys. 53, 6844 (1982). Google ScholarScitation, ISI
  20. 20. M. Born and K. Huang, Dynamical Theory of Crystal Lattices (Oxford University, London, 1968). Google Scholar
  21. 21. T. Azuhata, T. Sota, K. Suzuki, and S. Nakamura, J. Phys.: Condens. Matter 7, 129 (1995). Google ScholarCrossref
  22. 22. A. Tabata, R. Enderlein, J. R. Leite, S. W. da Silva, J. C. Galzerani, D. Schikora, M. Kloidt, and K. Lischka, J. Appl. Phys. 79, 4137 (1996). Google ScholarScitation, ISI
  23. 23. P. Perlin, A. Polian, and T. Suski, Phys. Rev. B 47, 2874 (1993); Google ScholarCrossref
    P. Perlin, C. Jauberthie-Carrillon, J. P. Itie, I. Grzegory, and A. Polian, Phys. Rev. B 45, 83 (1992). , Google ScholarCrossref
  24. 24. J. A. Sanjurjo, E. Lopez-Cruz, P. Vogl, and M. Cardona, Phys. Rev. B 28, 4579 (1983). Google ScholarCrossref
  25. 25. L. E. McNeil, M. Grimsditch, and R. H. French, J. Am. Ceram. Soc. 76, 1132 (1993). Google ScholarCrossref
  26. 26. M. S. Liuet al., Int. J. Mod. Phys. B 12, 1963 (1998). Google ScholarCrossref
  27. 27. J. Zi, X. Wan, G. Wei, K. M. Zhang, and X. Xie, J. Phys.: Condens. Matter 8, 6323 (1996). Google ScholarCrossref
  28. 28. M. S. Liu, Y. Z. Tong, L. A. Bursill, S. Prawer, K. W. Nugent, and G. Y. Zhang, Solid State Commun. 108, 765 (1998). Google ScholarCrossref
  29. 29. H. Grille, Ch. Schnittler, and F. Bechstedt, Phys. Rev. B 61, 6091 (2000). Google ScholarCrossref
  30. 30. H. Harima, T. Inoue, S. Nakashima, H. Okumura, Y. Ishida, S. Yoshida, T. Koizumi, H. Grille, and F. Bechstedt, Appl. Phys. Lett. 74, 191 (1999). Google ScholarScitation
  31. 31. K. E. Miyano, J. C. Woicik, L. H. Robins, C. E. Bouldin, and D. K. Wickenden, Appl. Phys. Lett. 70, 2108 (1997). Google ScholarScitation
  32. 32. A. E. Wickenden, D. K. Wickenden, and T. J. Kistenmacher, J. Appl. Phys. 75, 5367 (1994). Google ScholarScitation
  33. 33. R. J. Nemanich, S. A. Solin, and R. M. Martin, Phys. Rev. B 23, 6348 (1981). Google ScholarCrossref
  34. 34. H. Grilleand F. Bechstedt, J. Raman Spectrosc. 27, 201 (1996). Google ScholarCrossref
  1. © 2001 American Institute of Physics.