No Access
Published Online: 12 July 2001
Accepted: April 2001
J. Chem. Phys. 115, 1716 (2001); https://doi.org/10.1063/1.1378322
more...View Affiliations
  • Research Department, Code 4T4100D, Naval Air Warfare Center, China Lake, California 93555
The stochastic simulation algorithm (SSA) is an essentially exact procedure for numerically simulating the time evolution of a well-stirred chemically reacting system. Despite recent major improvements in the efficiency of the SSA, its drawback remains the great amount of computer time that is often required to simulate a desired amount of system time. Presented here is the “τ-leap” method, an approximate procedure that in some circumstances can produce significant gains in simulation speed with acceptable losses in accuracy. Some primitive strategies for control parameter selection and error mitigation for the τ-leap method are described, and simulation results for two simple model systems are exhibited. With further refinement, the τ-leap method should provide a viable way of segueing from the exact SSA to the approximate chemical Langevin equation, and thence to the conventional deterministic reaction rate equation, as the system size becomes larger.
  1. 1. D. T. Gillespie, J. Comput. Phys. 22, 403 (1976). Google ScholarCrossref
  2. 2. D. T. Gillespie, J. Phys. Chem. 81, 2340 (1977). Google ScholarCrossref
  3. 3. D. A. McQuarrie, J. Appl. Probab. 4, 413 (1967). Google ScholarCrossref
  4. 4. D. T. Gillespie, Physica A 188, 404 (1992). Google ScholarCrossref
  5. 5. H. H. McAdamsand A. P. Arkin, Proc. Natl. Acad. Sci. U.S.A. 94, 814 (1997). Google ScholarCrossref
  6. 6. A. P. Arkin, J. Ross, and H. H. McAdams, Genetics 149, 1633 (1998). Google Scholar
  7. 7. J. J. Lukkien, J. P. L. Segers, P. A. J. Hilbers, R. J. Gelten, and A. P. J. Jansen, Phys. Rev. E 58, 2598 (1998). Google ScholarCrossref
  8. 8. M. A. Gibsonand J. Bruck, J. Phys. Chem. A 104, 1876 (2000). Google ScholarCrossref
  9. 9. D. Endyand R. Brent, Nature (London) 409, 391 (2001). Google ScholarCrossref
  10. 10. D. T. Gillespie, J. Chem. Phys. 113, 297 (2000). Google ScholarScitation
  11. 11. D. T. Gillespie, Markov Processes: An Introduction for Physical Scientists (Academic, San Diego, 1992). Google Scholar
  12. 12. See Ref. 11, Appendix E. Google Scholar
  13. 13. W. Press, B. Flannery, S. Teukolsky, and W. Vetterling, Numerical Recipes, The Art of Scientific Computing (Cambridge University Press, New York, 1986). Google Scholar
  14. 14. See Ref. 11, Chap. 1. Google Scholar
  15. © 2001 American Institute of Physics.