No Access
Published Online: 29 November 2000
Accepted: September 2000
J. Chem. Phys. 113, 9978 (2000); https://doi.org/10.1063/1.1323224
more...View Affiliations
  • Department of Chemistry, Box 351700, University of Washington, Seattle, Washington 98195-1700
An improved way of estimating the local tangent in the nudged elastic band method for finding minimum energy paths is presented. In systems where the force along the minimum energy path is large compared to the restoring force perpendicular to the path and when many images of the system are included in the elastic band, kinks can develop and prevent the band from converging to the minimum energy path. We show how the kinks arise and present an improved way of estimating the local tangent which solves the problem. The task of finding an accurate energy and configuration for the saddle point is also discussed and examples given where a complementary method, the dimer method, is used to efficiently converge to the saddle point. Both methods only require the first derivative of the energy and can, therefore, easily be applied in plane wave based density-functional theory calculations. Examples are given from studies of the exchange diffusion mechanism in a Si crystal, Al addimer formation on the Al(100) surface, and dissociative adsorption of CH4 on an Ir(111) surface.
  1. 1. G. Millsand H. Jónsson, Phys. Rev. Lett. 72, 1124 (1994). Google ScholarCrossref
  2. 2. G. Mills, H. Jónsson, and G. K. Schenter, Surf. Sci. 324, 305 (1995). Google ScholarCrossref
  3. 3. H. Jónsson, G. Mills, and K. W. Jacobsen, in Classical and Quantum Dynamics in Condensed Phase Simulations, edited by B. J. Berne, G. Ciccotti, and D. F. Coker (World Scientific, Singapore, 1998), p. 385. Google Scholar
  4. 4. B. Uuberuaga, M. Levskovar, A. P. Smith, H. Jónsson, and M. Olmstead, Phys. Rev. Lett. 84, 2441 (2000). Google ScholarCrossref
  5. 5. J. Song, L. R. Corrales, G. Kresse, and H. Jónsson (to be published). Google Scholar
  6. 6. W. Windl, M. M. Bunea, R. Stumpf, S. T. Dunham, and M. P. Masquelier, Phys. Rev. Lett. 83, 4345 (1999). Google ScholarCrossref
  7. 7. R. Stumpf, C. L. Liu, and C. Tracy, Phys. Rev. B 59, 16047 (1999). Google ScholarCrossref
  8. 8. T. C. Shen, J. A. Steckel, and K. D. Jordan, Surf. Sci. 446, 211 (2000). Google ScholarCrossref
  9. 9. M. Villarbaand H. Jónsson, Surf. Sci. 317, 15 (1994). Google ScholarCrossref
  10. 10. M. Villarbaand H. Jónsson, Surf. Sci. 324, 35 (1995). Google ScholarCrossref
  11. 11. E. Batista and H. Jónsson, Computational Materials Science (to be published). Google Scholar
  12. 12. M. R. So/rensen, K. W. Jacobsen, and H. Jónsson, Phys. Rev. Lett. 77, 5067 (1996). Google ScholarCrossref
  13. 13. T. Rasmussen, K. W. Jacobsen, T. Leffers, O. B. Pedersen, S. G. Srinivasan, and H. Jónsson, Phys. Rev. Lett. 79, 3676 (1997). Google ScholarCrossref
  14. 14. R. Elberand M. Karplus, Chem. Phys. Lett. 139, 375 (1987). Google ScholarCrossref
  15. 15. R. Czerminskiand R. Elber, Int. J. Quantum Chem. 24, 167 (1990); Google ScholarCrossref
    R. Czerminskiand R. Elber, J. Chem. Phys. 92, 5580 (1990). , Google ScholarScitation
  16. 16. R. E. Gillilanand K. R. Wilson, J. Chem. Phys. 97, 1757 (1992). Google ScholarScitation
  17. 17. G. Henkelmanand H. Jónsson, J. Chem. Phys. 111, 7010 (1999). Google ScholarScitation
  18. 18. J. C. Polanyiand W. H. Wong, J. Chem. Phys. 51, 1439 (1969). Google ScholarScitation
  19. 19. K. C. Pandey, Phys. Rev. Lett. 57, 2287 (1986). Google ScholarCrossref
  20. 20. J. Tersoff, Phys. Rev. B 39, 5566 (1989). Google ScholarCrossref
  21. 21. A. F. Voterand S. P. Chen, Mater. Res. Soc. Symp. Proc. 82, 2384 (1987). Google Scholar
  22. 22. P. Hohenbergand W. Kohn, Phys. Rev. 136, B864 (1964); Google ScholarCrossref
    W. Kohnand L. J. Sham, Phys. Rev. 140, A1133 (1965). , Google ScholarCrossref
  23. 23. W. Kohn, A. D. Becke, and R. G. Parr, J. Phys. Chem. 100, 12974 (1996). Google ScholarCrossref
  24. 24. G. Kresseand J. Hafner, Phys. Rev. B 47, 558 (1993); Google ScholarCrossref
    G. Kresseand J. Furthmüller, Comput. Mater. Sci. 6, 16 (1996); , Google ScholarCrossref
    G. Kresseand J. Furthmüller, Phys. Rev. B 54, 11169 (1996). , Google ScholarCrossref
  25. 25. J. P. Perdew, in Electronic Structure of Solids, edited by P. Ziesche and H. Eschrig (Akademie Verlag, Berlin, 1991). Google Scholar
  26. 26. D. Vanderbilt, Phys. Rev. B 41, 7892 (1990). Google ScholarCrossref
  27. 27. D. C. Seets, C. T. Reeves, B. A. Ferguson, M. C. Wheeler, and C. B. Mullins, J. Chem. Phys. 107, 10229 (1997). Google ScholarScitation
  28. 28. G. Henkelman and H. Jónsson (in preparation). Google Scholar
  29. 29. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computation, 2nd ed. (Cambridge University Press, Cambridge, 1992), p. 420. Google Scholar
  30. © 2000 American Institute of Physics.