No Access Submitted: 05 July 2000 Accepted: 27 August 2000 Published Online: 16 October 2000
Appl. Phys. Lett. 77, 2752 (2000); https://doi.org/10.1063/1.1319513
more...View Contributors
  • Hidekazu Sato
  • Akira Izumi
  • Hideki Matsumura
The feasibility of using ultrathin silicon nitride (SiNx) films, prepared by catalytic chemical vapor deposition (Cat-CVD) method, as an ultrathin gate dielectric is reported. The effects of postdeposition treatments carried out using hydrogen (H2)-decomposed species or NH3-decomposed species formed by catalytic cracking of H2 and NH3 are also studied. A small hysteresis loop is seen in the C–V curve of as-deposited Cat-CVD SiNx films. The leakage current in the case of these films with equivalent oxide thickness (EOT) of 3 nm is slightly larger than that in the conventional thermal SiO2 films of similar EOT. However, it is found that the properties of Cat-CVD SiNx films are markedly improved by the postdeposition H2 or NH3 treatments, that is, the hysteresis loop disappears and the leakage current decreases by three orders of magnitude.
  1. 1. Y. Saito, K. Sekine, M. Hirayama, and T. Ohmi, Ext. Abst. International Conference on Solid State Devices and Materials, 1998, pp. 24 and 25. Google Scholar
  2. 2. S. C. Song, H. F. Luan, Y. Y. Chen, M. Gardner, J. Fulford, M. Alen, and D. L. Kwong, Tech. Dig. Int. Electron Devices Meet., 373 (1998). Google Scholar
  3. 3. H. Matsumuraand H. Tachibana, Appl. Phys. Lett. 47, 833 (1985). Google ScholarScitation, ISI
  4. 4. H. Matsumura, Jpn. J. Appl. Phys., Part 1 37, 3175 (1998). Google ScholarCrossref, ISI
  5. 5. S. Okadaand H. Matsumura, Jpn. J. Appl. Phys., Part 1 36, 7035 (1997). Google ScholarCrossref, ISI
  6. 6. A. Izumiand H. Matsumura, Appl. Phys. Lett. 71, 1371 (1997). Google ScholarScitation, ISI
  7. 7. A. Izumi, A. Masuda, and H. Matsumura, Thin Solid Films 343,344, 528 (1999). Google ScholarCrossref, ISI
  8. 8. W. Kernand D. A. Puotinen, RCA Rev. 31, 187 (1970). Google Scholar
  9. 9. L. M. Terman, Solid-State Electron. 5, 285 (1962). Google ScholarCrossref, ISI
  10. 10. T. P. Ma, IEEE Trans. Electron Devices 45, 680 (1998). Google ScholarCrossref, ISI
  11. 11. T. Ogata, M. Inoue, T. Nakamura, N. Tsuji, K. Kobayashi, K. Kawase, H. Kurokawa, T. Kaneoka, Y. Ono, and H. Miyoshi, Tech. Dig. Int. Electron Devices Meet., 597 (1998). Google Scholar
  12. 12. S. R. Kaluriand D. W. Hess, Appl. Phys. Lett. 69, 1053 (1996). Google ScholarScitation, ISI
  1. © 2000 American Institute of Physics.