Published Online: June 2014
Accepted: March 2014
View Affiliations
  • 1German University in Cairo, New Cairo City 13411, Egypt
  • 2MIRA–Institute for Biomedical Technology and Technical Medicine, University of Twente, 7500 AE Enschede, The Netherlands
  • 3MESA+ Institute for Nanotechnology, University of Twente, 7500 AE Enschede, The Netherlands
  • 4Korean Institute of Science and Technology, 66123 Saarbrücken, Germany
  • a)Electronic mail: .

    b)Electronic mail: .

In this work, a propulsion system similar in motion to a sperm-cell is investigated. This system consists of a structure resembling a sperm-cell with a magnetic head and a flexible tail of 42 μm and 280 μm in length, respectively. The thickness, length, and width of this structure are 5.2 μm, 322 μm, and 42 μm, respectively. The magnetic head includes a 200 nm-thick cobalt-nickel layer. The cobalt-nickel layer provides a dipole moment and allows the flexible structure to align along oscillating weak (less than 5 mT) magnetic field lines, and hence generates a propulsion thrust force that overcomes the drag force. The frequency response of this system shows that the propulsion mechanism allows for swimming at an average speed of 158 ± 32 μm/s at alternating weak magnetic field of 45 Hz. In addition, we experimentally demonstrate controlled steering of the flexible structure towards reference positions.
  1. 1. B. J. Nelson, I. K. Kaliakatsos, and J. J. Abbott, Annu. Rev. Biomed. Eng. 12, 55–85 (2010). https://doi.org/10.1146/annurev-bioeng-010510-103409 , Google ScholarCrossRef, CAS
  2. 2. J. Wang and W. Gao, ACS Nano 6, 5745–5751 (2012). https://doi.org/10.1021/nn3028997 , Google ScholarCrossRef, CAS
  3. 3. M. P. Kummer, J. J. Abbott, B. E. Kartochvil, R. Borer, A. Sengul, and B. J. Nelson, IEEE Trans. Rob. 26, 1006–1017 (2010). https://doi.org/10.1109/TRO.2010.2073030 , Google ScholarCrossRef
  4. 4. S. Sanchez, A. A. Solovev, S. Schulze, and O. G. Schmidt, Chem. Commun. 47, 698–700 (2011). https://doi.org/10.1039/c0cc04126b , Google ScholarCrossRef, CAS
  5. 5. L. Zhang, J. J. Abbott, L. Dong, B. E. Kratochvil, D. Bell, and B. J. Nelson, Appl. Phys. Lett. 94, 064107 (2009). https://doi.org/10.1063/1.3079655 , Google ScholarScitation
  6. 6. W. F. Paxton, K. C. Kistler, C. C. Olmeda, A. Sen, S. K. S. Angelo, Y. Cao, T. E. Mallouk, P. E. Lammert, and V. H. Crespi, J. Am. Chem. Soc. 126, 13424–13431 (2004). https://doi.org/10.1021/ja047697z , Google ScholarCrossRef, CAS
  7. 7. S. Fournier-Bidoz, A. C. Arsenault, I. Manners, and G. A. Ozin, Chem. Commun. 2005, 441–443. https://doi.org/10.1039/B414896G , Google ScholarCrossRef
  8. 8. J. R. Howse, A. J. Ryan, T. Gough, R. Vafabakhsh, and R. Golestanian, Phys. Rev. Lett. 99, 048102 (2007). https://doi.org/10.1103/PhysRevLett.99.048102 , Google ScholarCrossRef
  9. 9. Y. F. Mei, A. A. Solovev, S. Sanchez, and O. G. Schmidt, Chem. Soc. Rev. 40, 2109–2119 (2011). https://doi.org/10.1039/c0cs00078g , Google ScholarCrossRef, CAS
  10. 10. S. Sanchez, A. A. Solovev, S. M. Harazim, and O. G. Schmidt, J. Am. Chem. Soc. 133, 701–703 (2011). https://doi.org/10.1021/ja109627w , Google ScholarCrossRef, CAS
  11. 11. R. Dreyfus, J. Baudry, M. L. Roper, M. Fermigier, H. A. Stone, and J. Bibette, Nature 437, 862–865 (2005). https://doi.org/10.1038/nature04090 , Google ScholarCrossRef, CAS
  12. 12. A. A. Solovev, S. Sanchez, M. Pumera, Y. F. Mei, and O. G. Schmidt, Adv. Funct. Mater. 20, 2430–2435 (2010). https://doi.org/10.1002/adfm.200902376 , Google ScholarCrossRef, CAS
  13. 13. J. G. Gibbs and Y.-P. Zhao, Appl. Phys. Lett. 94, 163104 (2009). https://doi.org/10.1063/1.3122346 , Google ScholarScitation
  14. 14. I. S. M. Khalil, V. Magdanz, S. Sanchez, O. G. Schmidt, and S. Misra, Appl. Phys. Lett. 103, 172404 (2013). https://doi.org/10.1063/1.4826141 , Google ScholarScitation
  15. 15. E. Gillies, R. Cannon, R. Green, and A. Pacey, J. Fluid Mech. 625, 445 (2009). https://doi.org/10.1017/S0022112008005685 , Google ScholarCrossRef
  16. 16. E. L. Tony, S. Yu, and A. E. Hosoi, Phys. Fluids 18, 091701 (2006). https://doi.org/10.1063/1.2349585 , Google ScholarScitation
  17. 17. E. Lauga and T. Powers, Rep. Prog. Phys. 72, 096601 (2009). https://doi.org/10.1088/0034-4885/72/9/096601 , Google ScholarCrossRef
  18. 18. T. J. Ui, R. G. Hussey, and R. P. Roger, Phys. Fluids 27, 787 (1984). https://doi.org/10.1063/1.864706 , Google ScholarScitation, CAS
  19. 19. I. S. M. Khalil, V. Magdanz, S. Sanchez, O. G. Schmidt, and S. Misra, IEEE Trans. Rob. 30, 49–58 (2013). https://doi.org/10.1109/TRO.2013.2281557 , Google ScholarCrossRef
  20. 20. M. Gomendio, A. F. Malo, J. Garde, and E. R. S. Roldan, Reproduction 134, 19–29 (2007). https://doi.org/10.1530/REP-07-0143 , Google ScholarCrossRef, CAS
  21. © 2014 AIP Publishing LLC.

Select Your Access


Purchase

7 days access for $30.00