Published Online: October 2012
Accepted: August 2012
Silicon nanoparticle-ZnS nanophosphors for ultraviolet-based white light emitting diode
Journal of Applied Physics 112, 074313 (2012);
https://doi.org/10.1063/1.4754449
Abstract
Present red phosphor converters provide spectra dominated by sharp lines and suffer from availability and stability issues which are not ideal for color mixing in display or solid state lighting applications. We examine the use of mono dispersed 3 nm silicon nanoparticles, with inhomogeneously broadened red luminescence as an effective substitute for red phosphors. We tested a 3-phase hybrid nanophosphor consisting of ZnS:Ag, ZnS:Cu,Au,Al, and nanoparticles. Correlated color temperature is examined under UV and LED pumping in the range 254, 365–400 nm. The temperature is found reasonably flat for the longer wavelengths and drops for the shorter wavelengths while the color rendering index increases. The photo stability of the phosphors relative to the silicon nanoparticles is recorded. The variation in the temperature is analyzed in terms of the strength of inter-band–gap transition and continuum band to band transitions.
REFERENCES
- 1.
T. Nishida, H. Saito, and N. Kobayashi, Appl. Phys. Lett. 79, 711 (2001); https://doi.org/10.1063/1.1390485 , Google Scholar
T. Taguchi, IEEJ Trans. Electr. Electron. Eng. 3, 21 (2008). https://doi.org/10.1002/tee.20228 , Google ScholarScitation, CAS - 2. T. Kim and S. Kang, J. Lumin. 122–123, 964 (2007). https://doi.org/10.1016/j.jlumin.2006.01.339 , Google ScholarCrossref, CAS
- 3. J. Jeonga, M. Jayasimhadria, H. S. Leeb, K. Jangb, S. S. Yic, J. H. Jeongd, and C. Kime, Physica B 404, 2016 (2009). https://doi.org/10.1016/j.physb.2009.03.038 , Google ScholarCrossref
- 4. J. S. Kim, P. E. Jeon, J. C. Choi, H. L. Park, S. I. Mho, and G. C. Kim, Appl. Phys. Lett. 84, 2931 (2004). https://doi.org/10.1063/1.1695441 , Google ScholarScitation, CAS
- 5. Z. L. Wang, H. B. Liang, J. Wang, M. L. Gong, and Q. Su, Appl. Phys. Lett. 89, 071921 (2006). https://doi.org/10.1063/1.2335579 , Google ScholarScitation
- 6. Z. Wu, J. Liu, and M. Gong, Chem. Phys. Lett. 466, 88 (2008). https://doi.org/10.1016/j.cplett.2008.10.034 , Google ScholarCrossref, CAS
- 7. R.-J. Xie, N. Hirosaki, and M. Mitomo, J. Electroceram. 21, 370 (2008). https://doi.org/10.1007/s10832-007-9202-7 , Google ScholarCrossref, CAS
- 8. R.-J. Xie and N. Hirosaki, Sci. Technol. Adv. Mater. 8, 588 (2007). https://doi.org/10.1016/j.stam.2007.08.005 , Google ScholarCrossref, CAS
- 9. D. Jia and D. N. Hunter, J. Appl. Phys. 100, 113125 (2006). https://doi.org/10.1063/1.2400091 , Google ScholarScitation
- 10. H. A. Hoppe, H. Lutz, P. Morys, W. Schnick, and A. Seilmeier, J. Phys. Chem. Solids 61, 2001 (2000). https://doi.org/10.1016/S0022-3697(00)00194-3 , Google ScholarCrossref, CAS
- 11. Y. Q. Li, A. C. A. Delsing, G. de With, and H. T. Hintzen, Chem. Mater. 17, 3242 (2005). https://doi.org/10.1021/cm050175d , Google ScholarCrossref, CAS
- 12. K. Uheda, N. Hirosaki, Y. Yamamoto, A. Naito, T. Nakajima, and H. Yamamoto, Electrochem. Solid State Lett. 9, H22 (2006). https://doi.org/10.1149/1.2173192 , Google ScholarCrossref, CAS
- 13. R. Le Toquin and A. K. Cheetham, Chem. Phys. Lett. 423, 352 (2006). https://doi.org/10.1016/j.cplett.2006.03.056 , Google ScholarCrossref, CAS
- 14. C. Guo, H.-K. Yang, Z. Fu, L. Li, B.-C. Choi, and J.-H. Jeong, J. Am. Ceramic Soc. 92, 1713 (2009). https://doi.org/10.1111/j.1551-2916.2009.03076.x , Google ScholarCrossref, CAS
- 15. J. Cho, H. Kim, C. Sone, Y. Park, Y. S. Kim, S. Kubota, and E. Yoon, Phys. Status Solidi (RRL) 3, 34 (2009). https://doi.org/10.1002/pssr.200802261 , Google ScholarCrossref, CAS
- 16. T. Fukui, K. Kamon, J. Takeshita, H. Hayashi, T. Miyachi, Y. Uchida, S. Kurai, and T. Taguchi, Jpn. J. Appl. Phys., Part 1 48, 112101 (2009). https://doi.org/10.1143/JJAP.48.112101 , Google ScholarCrossref
- 17. H. Song and S. Lee, Nanotechnology 18, 255202 (2007). https://doi.org/10.1088/0957-4484/18/25/255202 , Google ScholarCrossref
- 18. G. Belomoin, J. Therrien, A. Smith, S. Rao, S. Chaieb, and M. H. Nayfeh, Appl. Phys. Lett. 80, 841 (2002). https://doi.org/10.1063/1.1435802 , Google ScholarScitation, CAS
- 19. D. Nielsen, L. Abuhassan, M. Alchihabi, A. Al-Muhanna, J. Host, and M. H. Nayfeh, J. Appl. Phys. 101, 114302 (2007). https://doi.org/10.1063/1.2733639 , Google ScholarScitation
- 20. Y. Sato, N. Takahashi, and S. Sato, Jpn. J. Appl. Phys., Part 2 35, L838 (1996). https://doi.org/10.1143/JJAP.35.L838 , Google ScholarCrossref, CAS
- 21. Y. Narukawa, I. Niki, K. Izuno, M. Yamada, Y. Murazaki, and T. Mukai, Jpn. J. Appl. Phys., Part 2 41, L371 (2002). https://doi.org/10.1143/JJAP.41.L371 , Google ScholarCrossref, CAS
- 22. O. M. Nayfeh, D. A. Antoniadis, K. Mantey, and M. H. Nayfeh, Appl. Phys. Lett. 94, 043112 (2009). https://doi.org/10.1063/1.3075845 , Google ScholarScitation
- 23. O. Nayfeh, D. Antoniadis, K. Mantey, and M. H. Nayfeh, Appl. Phys. Lett. 90, 153105 (2007). https://doi.org/10.1063/1.2721145 , Google ScholarScitation
- 24. K. Manzoor, S. R. Vadera, N. Kumar, and T. R. N. Kutty, Appl. Phys. Lett. 84, 284 (2004). https://doi.org/10.1063/1.1639935 , Google ScholarScitation, CAS
- 25. K. Manzoor, S. R. Vadera, N. Kumar, and T. R. N. Kutty, Mater. Chem. Phys. 82, 718 (2003). https://doi.org/10.1016/S0254-0584(03)00366-3 , Google ScholarCrossref, CAS
- 26. A. Smith, Z. Yamani, J. Turner, S. Habbal, S. Granick, and M. H. Nayfeh, Phys. Rev. B 72, 205307 (2005). https://doi.org/10.1103/PhysRevB.72.205307 , Google ScholarCrossref
- © 2012 American Institute of Physics.
Select Your Access
Individual Access
If you have an individual subscription, a subscription provided by one of AIP's Member Societies, have claimed access to a Conference Proceeding, or have made an individual purchase, sign in below.

