Published Online: October 2012
Accepted: August 2012
Journal of Applied Physics 112, 074313 (2012); https://doi.org/10.1063/1.4754449
more...View Affiliations
Present red phosphor converters provide spectra dominated by sharp lines and suffer from availability and stability issues which are not ideal for color mixing in display or solid state lighting applications. We examine the use of mono dispersed 3 nm silicon nanoparticles, with inhomogeneously broadened red luminescence as an effective substitute for red phosphors. We tested a 3-phase hybrid nanophosphor consisting of ZnS:Ag, ZnS:Cu,Au,Al, and nanoparticles. Correlated color temperature is examined under UV and LED pumping in the range 254, 365–400 nm. The temperature is found reasonably flat for the longer wavelengths and drops for the shorter wavelengths while the color rendering index increases. The photo stability of the phosphors relative to the silicon nanoparticles is recorded. The variation in the temperature is analyzed in terms of the strength of inter-band–gap transition and continuum band to band transitions.
  1. 1. T. Nishida, H. Saito, and N. Kobayashi, Appl. Phys. Lett. 79, 711 (2001); https://doi.org/10.1063/1.1390485 , Google Scholar
    T. Taguchi, IEEJ Trans. Electr. Electron. Eng. 3, 21 (2008). https://doi.org/10.1002/tee.20228 , Google ScholarScitation, CAS
  2. 2. T. Kim and S. Kang, J. Lumin. 122–123, 964 (2007). https://doi.org/10.1016/j.jlumin.2006.01.339 , Google ScholarCrossref, CAS
  3. 3. J. Jeonga, M. Jayasimhadria, H. S. Leeb, K. Jangb, S. S. Yic, J. H. Jeongd, and C. Kime, Physica B 404, 2016 (2009). https://doi.org/10.1016/j.physb.2009.03.038 , Google ScholarCrossref
  4. 4. J. S. Kim, P. E. Jeon, J. C. Choi, H. L. Park, S. I. Mho, and G. C. Kim, Appl. Phys. Lett. 84, 2931 (2004). https://doi.org/10.1063/1.1695441 , Google ScholarScitation, CAS
  5. 5. Z. L. Wang, H. B. Liang, J. Wang, M. L. Gong, and Q. Su, Appl. Phys. Lett. 89, 071921 (2006). https://doi.org/10.1063/1.2335579 , Google ScholarScitation
  6. 6. Z. Wu, J. Liu, and M. Gong, Chem. Phys. Lett. 466, 88 (2008). https://doi.org/10.1016/j.cplett.2008.10.034 , Google ScholarCrossref, CAS
  7. 7. R.-J. Xie, N. Hirosaki, and M. Mitomo, J. Electroceram. 21, 370 (2008). https://doi.org/10.1007/s10832-007-9202-7 , Google ScholarCrossref, CAS
  8. 8. R.-J. Xie and N. Hirosaki, Sci. Technol. Adv. Mater. 8, 588 (2007). https://doi.org/10.1016/j.stam.2007.08.005 , Google ScholarCrossref, CAS
  9. 9. D. Jia and D. N. Hunter, J. Appl. Phys. 100, 113125 (2006). https://doi.org/10.1063/1.2400091 , Google ScholarScitation
  10. 10. H. A. Hoppe, H. Lutz, P. Morys, W. Schnick, and A. Seilmeier, J. Phys. Chem. Solids 61, 2001 (2000). https://doi.org/10.1016/S0022-3697(00)00194-3 , Google ScholarCrossref, CAS
  11. 11. Y. Q. Li, A. C. A. Delsing, G. de With, and H. T. Hintzen, Chem. Mater. 17, 3242 (2005). https://doi.org/10.1021/cm050175d , Google ScholarCrossref, CAS
  12. 12. K. Uheda, N. Hirosaki, Y. Yamamoto, A. Naito, T. Nakajima, and H. Yamamoto, Electrochem. Solid State Lett. 9, H22 (2006). https://doi.org/10.1149/1.2173192 , Google ScholarCrossref, CAS
  13. 13. R. Le Toquin and A. K. Cheetham, Chem. Phys. Lett. 423, 352 (2006). https://doi.org/10.1016/j.cplett.2006.03.056 , Google ScholarCrossref, CAS
  14. 14. C. Guo, H.-K. Yang, Z. Fu, L. Li, B.-C. Choi, and J.-H. Jeong, J. Am. Ceramic Soc. 92, 1713 (2009). https://doi.org/10.1111/j.1551-2916.2009.03076.x , Google ScholarCrossref, CAS
  15. 15. J. Cho, H. Kim, C. Sone, Y. Park, Y. S. Kim, S. Kubota, and E. Yoon, Phys. Status Solidi (RRL) 3, 34 (2009). https://doi.org/10.1002/pssr.200802261 , Google ScholarCrossref, CAS
  16. 16. T. Fukui, K. Kamon, J. Takeshita, H. Hayashi, T. Miyachi, Y. Uchida, S. Kurai, and T. Taguchi, Jpn. J. Appl. Phys., Part 1 48, 112101 (2009). https://doi.org/10.1143/JJAP.48.112101 , Google ScholarCrossref
  17. 17. H. Song and S. Lee, Nanotechnology 18, 255202 (2007). https://doi.org/10.1088/0957-4484/18/25/255202 , Google ScholarCrossref
  18. 18. G. Belomoin, J. Therrien, A. Smith, S. Rao, S. Chaieb, and M. H. Nayfeh, Appl. Phys. Lett. 80, 841 (2002). https://doi.org/10.1063/1.1435802 , Google ScholarScitation, CAS
  19. 19. D. Nielsen, L. Abuhassan, M. Alchihabi, A. Al-Muhanna, J. Host, and M. H. Nayfeh, J. Appl. Phys. 101, 114302 (2007). https://doi.org/10.1063/1.2733639 , Google ScholarScitation
  20. 20. Y. Sato, N. Takahashi, and S. Sato, Jpn. J. Appl. Phys., Part 2 35, L838 (1996). https://doi.org/10.1143/JJAP.35.L838 , Google ScholarCrossref, CAS
  21. 21. Y. Narukawa, I. Niki, K. Izuno, M. Yamada, Y. Murazaki, and T. Mukai, Jpn. J. Appl. Phys., Part 2 41, L371 (2002). https://doi.org/10.1143/JJAP.41.L371 , Google ScholarCrossref, CAS
  22. 22. O. M. Nayfeh, D. A. Antoniadis, K. Mantey, and M. H. Nayfeh, Appl. Phys. Lett. 94, 043112 (2009). https://doi.org/10.1063/1.3075845 , Google ScholarScitation
  23. 23. O. Nayfeh, D. Antoniadis, K. Mantey, and M. H. Nayfeh, Appl. Phys. Lett. 90, 153105 (2007). https://doi.org/10.1063/1.2721145 , Google ScholarScitation
  24. 24. K. Manzoor, S. R. Vadera, N. Kumar, and T. R. N. Kutty, Appl. Phys. Lett. 84, 284 (2004). https://doi.org/10.1063/1.1639935 , Google ScholarScitation, CAS
  25. 25. K. Manzoor, S. R. Vadera, N. Kumar, and T. R. N. Kutty, Mater. Chem. Phys. 82, 718 (2003). https://doi.org/10.1016/S0254-0584(03)00366-3 , Google ScholarCrossref, CAS
  26. 26. A. Smith, Z. Yamani, J. Turner, S. Habbal, S. Granick, and M. H. Nayfeh, Phys. Rev. B 72, 205307 (2005). https://doi.org/10.1103/PhysRevB.72.205307 , Google ScholarCrossref
  27. © 2012 American Institute of Physics.

Select Your Access


Purchase

7 days access for $30.00