Published Online: July 2014
Accepted: July 2014
Journal of Applied Physics 116, 043702 (2014); https://doi.org/10.1063/1.4891201
more...View Affiliations
In this work, we investigate the crystal anharmonic effects in the thermoelectric properties of n-type PbTe. The lattice thermal transport coefficient is computed by employing an isotropic continuum model for the dispersion relation for acoustic as well as optical phonon branches, an isotropic continuum model for crystal anharmonicity, and the single-mode relaxation time scheme. The electronic components of the transport coefficients in a wide temperature range are calculated using the isotropic-nearly-free-electron model, interaction of electrons with deformation potential of acoustic phonons, and the effect of the band non-parabolicity. It is found that the transverse optical branches play a major role in determining the phonon conductivity and the thermoelectric figure of merit of this material.
  1. 1. D. M. Rowe , CRC Handbook of Thermoelectrics ( CRC Press, New York, 1995). Google ScholarCrossref
  2. 2. H. J. Goldsmid , Introduction to Thermoelectricity ( Springer, 2010). Google ScholarCrossref
  3. 3. Y. Pei et al., Energy Environ. Sci. 4, 2085 (2011). https://doi.org/10.1039/c0ee00456a, Google ScholarCrossref, CAS
  4. 4. A. D. Lalonde , Y. Pei , and G. J. Snyder , Energy Environ. Sci. 4, 2090 (2011). https://doi.org/10.1039/c1ee01314a, Google ScholarCrossref, CAS
  5. 5. D. Greig , Phys. Rev. 120, 358 (1960). https://doi.org/10.1103/PhysRev.120.358, Google ScholarCrossref, CAS
  6. 6. Y.-L. Pei and Y. Liu , J. Alloys Compd. 514, 40 (2012). https://doi.org/10.1016/j.jallcom.2011.10.036, Google ScholarCrossref, CAS
  7. 7. T. S. Stavyzkay , L. V. Prokophye , Yu. I. Ravich , and B. A. Efimova , Fiz. Tech. Pol. 1, 1138 (1967). Google Scholar
  8. 8. I. A. Smyrnoff and Yu. I. Ravich , Fiz. Tech. Pol. 1, 891 (1967). Google Scholar
  9. 9. Yu. I. Ravich , B. A. Efimova , and I. A. Smirnov , Semiconducting Lead Chalcogenides ( Plenum Press 1970), p. 89. Google ScholarCrossref
  10. 10. B. Ya. Moyzhes and Yu. I. Ravich , Fiz. Tech. Pol. 1, 188 (1967). Google Scholar
  11. 11. C. Wood , Rep. Prog. Phys. 51, 459 (1988). https://doi.org/10.1088/0034-4885/51/4/001, Google ScholarCrossref, CAS
  12. 12. G. S. Nolas , J. Sharp , and H. J. Goldsmid , Thermoelectrics, Basic Principles and New Materials Developments ( Springer, 2001). Google Scholar
  13. 13. J. P. Heremans , V. Jovovic , E. S. Toberer , A. Saramat , A. Charoenphakdee , Shi. Yamanaka , and G. J. Snyder , Science 321, 554 (2008). https://doi.org/10.1126/science.1159725, Google ScholarCrossref, CAS
  14. 14. O. Delaire , J. Ma , K. Marty , A. F. May , M. A. McGuire , M. H. Du , D. J. Singh , A. Podlesnyak , G. Ehlers , M. D. Lumsden , and B. C. Sales , Nature Mater. 10, 614 (2011). https://doi.org/10.1038/nmat3035, Google ScholarCrossref, CAS
  15. 15. G. P. Srivastava , The Physics of Phonons ( Adam Hilger, Bristol, 1990). Google Scholar
  16. 16. P. Carruthers , Rev. Mod. Phys. 33, 92 (1961). https://doi.org/10.1103/RevModPhys.33.92, Google ScholarCrossref, CAS
  17. 17. J. M. Ziman , Philos. Mag. 1, 191 (1956); https://doi.org/10.1080/14786435608238092, Google Scholar
    J. M. Ziman , Philos. Mag. 2, 292 (1957). Google ScholarCrossref, CAS
  18. 18. J. E. Parrott , Proc. Phys. Soc. 81, 726 (1963). https://doi.org/10.1088/0370-1328/81/4/314, Google ScholarCrossref, CAS
  19. 19. R. A. H. Hamilton and J. E. Parrott , Phys. Rev. 178, 1284 (1969). https://doi.org/10.1103/PhysRev.178.1284, Google ScholarCrossref, CAS
  20. 20. J. R. Drabble and H. J. Goldsmid , Thermal Conduction in Semiconductors ( Pergamon Press 1961), p. 108. Google Scholar
  21. 21. D. M. Zayachuck , Phys. Tech. Semicond. (Russia) 31, 217 (1997). Google Scholar
  22. 22. Yu. I. Ravich , B. A. Efimova , and V. I. Tamarchenko , Phys. Status Solidi B 43, 11 (1971). https://doi.org/10.1002/pssb.2220430102, Google ScholarCrossref, CAS
  23. 23. W. Zawadsky , “ Electron transport phenomena in small gap semiconductor,” Adv. Phys. 23, 435 (1974). https://doi.org/10.1080/00018737400101371, Google ScholarCrossref
  24. 24. D. M. Freik , L. I. Nykyruy , and V. M. Shperun , Semicond. Phys. Quantum Electron. Optoelectron. 5, 362 (2002). Google ScholarCAS
  25. 25. Yu. I. Ravich , J. Phys. Colloq. 29, C4 (1968). https://doi.org/10.1051/jphyscol:1968416, Google ScholarCrossref
  26. 26. J. P. McKelvey , Solid State and Semiconductor Physics, International ed. ( Harper and Row, New York). Google Scholar
  27. 27. P. J. Price , Philos. Mag. 46, 1252 (1955). Google ScholarCrossref, CAS
  28. 28. A. F. Ioffe , Physics of Semiconductors ( Infosearch Ltd., 1960). Google Scholar
  29. 29. Y. Zhang , X. Ke , C. Chen , J. Yang , and P. R. C. Kent , Phys. Rev. B 80, 024304 (2009). https://doi.org/10.1103/PhysRevB.80.024304, Google ScholarCrossref
  30. 30. V. Palankovski , M. Wagner , and W. Heiss , Springer Proceedings in Physics ( Springer, Dordrecht, 2008), Vol. 119, p. 77. Google Scholar
  31. 31. W. Cochran , R. A. Cowley , G. Dolling , and M. M. Elcombe , Proc. R. Soc. London, Ser. A 293, 433 (1966). https://doi.org/10.1098/rspa.1966.0182, Google ScholarCrossref, CAS
  32. 32. Y. Bencherif , A. Boukra , A. Zaoui , and M. Ferhat , Infrared Phys. Technol. 54, 39 (2011). https://doi.org/10.1016/j.infrared.2010.11.001, Google ScholarCrossref, CAS
  33. 33. D. H. Parkinson and J. E. Quarrington , Proc. Phys. Soc. 67, 569 (1954). https://doi.org/10.1088/0370-1298/67/7/301, Google ScholarCrossref
  34. 34. Z. Tian , J. Garg , K. Esfarjani , T. Shiga , J. Shiomi , and G. Chen , Phys. Rev. B 85, 184303 (2012). https://doi.org/10.1103/PhysRevB.85.184303, Google ScholarCrossref
  35. 35. J. R. Sootsman , R. J. Pcionek , H. Kong , C. Uher , and M. G. Kanatzidis , Chem. Mater. 18, 4993 (2006). https://doi.org/10.1021/cm0612090, Google ScholarCrossref, CAS
  36. 36. P. G. Klemens , Proc. R. Soc. London, Ser. A 208, 108 (1951). https://doi.org/10.1098/rspa.1951.0147, Google ScholarCrossref, CAS
  37. 37. G. P. Srivastava , Pramãna 6, 1 (1976). https://doi.org/10.1007/BF02846006, Google ScholarCrossref, CAS
  38. 38. C. Herring , Phys. Rev. 95, 954 (1954). https://doi.org/10.1103/PhysRev.95.954, Google ScholarCrossref, CAS
  39. 39. H. A. Lyden , Phys. Rev. 135, A514 (1964). https://doi.org/10.1103/PhysRev.135.A514, Google ScholarCrossref, CAS
  40. 40. E. Miller , K. Komarek , and I. Cadoff , J. Appl. Phys. 32, 2457 (1961). https://doi.org/10.1063/1.1777091, Google ScholarScitation, CAS
  41. 41.One of the authors of Ref. 66. Y.-L. Pei and Y. Liu , J. Alloys Compd. 514, 40 (2012). https://doi.org/10.1016/j.jallcom.2011.10.036 was contacted regarding the difference between their presented experimental data for S and σ and their computed maximum of ZT. They have confirmed the inconsistency in their graphs, indicating that their corrected ZT results are consistent with ours.
  42. © 2014 AIP Publishing LLC.