Published Online: November 2012
Accepted: October 2012
Journal of Renewable and Sustainable Energy 4, 062703 (2012); https://doi.org/10.1063/1.4766892
more...View Affiliations
Piezoelectric energy harvesting technologies have received a great attention during the last decade to design self-powered microelectronic devices such as wireless sensor nodes. Piezoelectric energy harvester is a resonant system that produces maximum power output when its resonant frequency matches the ambient vibration frequency. The deviation from the resonance causes significant decrease in the power output. There are two possible solutions to compensate the effect of frequency deviation: widening the operating frequency bandwidth and tuning the resonant frequency. Tuning the resonant frequency is a more efficient technique for applications with single time varying dominant frequency. This paper presents a comprehensive review of frequency tuning methods for piezoelectric energy harvesting systems. Two categories generally investigated in the literature include manual and autonomous tuning methods. The recent developments of many tuning strategies are discussed and summarized.
  1. 1. B. Singh and M. Y. Othman, J. Renewable Sustainable Energy 1, 062702 (2009). https://doi.org/10.1063/1.3266963 , Google ScholarScitation
  2. 2. Y.-G. Deng and J. Liu, J. Renewable Sustainable Energy 1, 052701 (2009). https://doi.org/10.1063/1.3212675 , Google ScholarCrossref
  3. 3. Q. Liu, Q. Miao, J. J. Liu, and W. Yang, J. Renewable Sustainable Energy 1, 043105 (2009). https://doi.org/10.1063/1.3168403 , Google ScholarScitation
  4. 4. V. Leonov and R. J. M. Vullers, J. Renewable Sustainable Energy 1, 062701 (2009). https://doi.org/10.1063/1.3255465 , Google ScholarScitation
  5. 5. S. P. Beeby, M. J. Tudor, and N. M. White, Meas. Sci. Technol. 17(12), R175–R195 (2006). https://doi.org/10.1088/0957-0233/17/12/R01 , Google ScholarCrossref, CAS
  6. 6. C. B. Williams and R. B. Yates, Sens. Actuators, A 52(1–3), 8–11 (1996). https://doi.org/10.1016/0924-4247(96)80118-X , Google ScholarCrossref, CAS
  7. 7. P. D. Mitcheson, P. Miao, B. H. Stark, E. M. Yeatman, A. S. Holmes, and T. C. Green, Sens. Actuators, A 115(2–3), 523–529 (2004). https://doi.org/10.1016/j.sna.2004.04.026 , Google ScholarCrossref, CAS
  8. 8. M. El-hami, P. Glynne-Jones, N. M. White, M. Hill, S. Beeby, E. James, A. D. Brown, and J. N. Ross, Sens. Actuators, A 92(1–3), 335–342 (2001). https://doi.org/10.1016/S0924-4247(01)00569-6 , Google ScholarCrossref, CAS
  9. 9. P. Glynne Jones, M. J. Tudor, S. P. Beeby, and N. M. White, Sens. Actuators, A 110(1–3), 344–349 (2004). https://doi.org/10.1016/j.sna.2003.09.045 , Google ScholarCrossref, CAS
  10. 10. C. Keawboonchuay and T. G. Engel, IEEE Trans. Plasma Sci. 31(1), 123–128 (2003). https://doi.org/10.1109/TPS.2003.808874 , Google ScholarCrossref, CAS
  11. 11. Y. Jiashi, C. Ziguang, and H. Yuantai, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(1), 190–195 (2007). https://doi.org/10.1109/TUFFC.2007.224 , Google ScholarCrossref
  12. 12. K. A. Cook-Chennault, N. Thambi, and A. M. Sastry, Smart Mater. Struct. 17(4), 043001 (2008). https://doi.org/10.1088/0964-1726/17/4/043001 , Google ScholarCrossref
  13. 13. T. J. Kazmierski and S. Beeby, Energy Harvesting System (Springer, New York, 2011). Google Scholar
  14. 14. X. Huan, H. Yuantai, and W. Qing-ming, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55(9), 2104–2108 (2008). https://doi.org/10.1109/TUFFC.903 , Google ScholarCrossref
  15. 15. M. Ferrari, V. Ferrari, M. Guizzetti, D. Marioli, and A. Taroni, Sens. Actuators, A 142(1), 329–335 (2008). https://doi.org/10.1016/j.sna.2007.07.004 , Google ScholarCrossref, CAS
  16. 16. F. Cottone, R. Mincigruccia, I. Neria, F. Orfeia, F. Travassoa, H. Voccaa, and L. Gammaitonia, Proc. Comput. Sci. 7, 190–191 (2011). https://doi.org/10.1016/j.procs.2011.09.048 , Google ScholarCrossref
  17. 17. S. C. Stanton, C. C. McGehee, and B. P. Mann, Physica D 239(10), 640–653 (2010). https://doi.org/10.1016/j.physd.2010.01.019 , Google ScholarCrossref, CAS
  18. 18. M. S. M. Soliman, E. M. Abdel-Rahman, E. F. El-Saadany, and R. R. Mansour, J. Micromech. Microeng. 18, 115021 (2008). https://doi.org/10.1088/0960-1317/18/11/115021 , Google ScholarCrossref
  19. 19. L. Gu and C. Livermore, Appl. Phys. Lett. 97(8), 081904–081904 (2010). https://doi.org/10.1063/1.3481689 , Google ScholarScitation
  20. 20. L. Tang, Y. Yang, and C. K. Soh, J. Intell. Mater. Syst. Struct. 21(18), 1867–1897 (2010). https://doi.org/10.1177/1045389X10390249 , Google ScholarCrossref
  21. 21. D. Zhu, M. J. Tudor, and S. P. Beeby, Meas. Sci. Technol. 21(2), 022001 (2010). https://doi.org/10.1088/0957-0233/21/2/022001 , Google ScholarCrossref
  22. 22. A. E. K. Safari, Piezoelectric and Acoustic Materials for Transducer Applications (Springer, New York, 2010). Google Scholar
  23. 23. J. Farmer, “ A comparison of power harvesting techniques and related energy storage issues,” M.Sc. thesis (Virginia Polytechnic Institute and State University, USA, 2007). Google Scholar
  24. 24. H. A. Sodano, G. Park, and D. J. Inman, Shock Vib. Dig. 36(3), 197–205 (2003), available at http://www.me.mtu.edu/~hsodano/Publications/SVD%202004%20Power%20Harvesting%20Review.pdf. https://doi.org/10.1177/0583102404043275 , Google ScholarCrossref
  25. 25. S. Anton and H. A. Sodano, Smart Mater. Struct. 16, R1–R21 (2007). https://doi.org/10.1088/0964-1726/16/3/R01 , Google ScholarCrossref, CAS
  26. 26. S. Priya, J. Electroceram. 19(1), 167–184 (2007). https://doi.org/10.1007/s10832-007-9043-4 , Google ScholarCrossref
  27. 27. D. Guyomar and M. Lallart, Micromachines 2(2), 274–294 (2011). https://doi.org/10.3390/mi2020274 , Google ScholarCrossref
  28. 28. J. A. Goldman, “ Piezoelectric power generating arrangement activated by elements caused to rotate by natural energy source,” U.S. patent 6,438,957 (2002). Google Scholar
  29. 29. M. H. Mickle, C. C. Capelli, and H. Swift, “ Energy harvesting circuit,” U.S. patent 7,084,605 (2006). Google Scholar
  30. 30. M. Duron, R. Calvarese, R. Sandler, and T. Wulff, “ Energy harvesting in RFID systems,” U.S. patent 8,035,335 (2011). Google Scholar
  31. 31. D. Hohlfeld and R. V. Schaijk, “ Systems and methods for resonance frequency tuning of micromachined structures,” U.S. patent US20110074247 (2010). Google Scholar
  32. 32. B. A. Terzian and R. A. Brodmann, “ Self powered cell phone,” U.S. patent 7,266,396 (2007). Google Scholar
  33. 33. R. D. Blevins, Formulas for Natural Frequency and Mode Shape (Krieger, Malabar, FL, 2001). Google Scholar
  34. 34. S. Roundy and Y. Zhang, “ Toward self-tuning adaptive vibration-based microgenerators,” Proc. SPIE 5649, 373 (2005). https://doi.org/10.1117/12.581887 , Google ScholarCrossref
  35. 35. P. J. Cornwell, J. Goethal, J. Kowko, and M. Damianakis, J. Intell. Mater. Syst. Struct. 16(10), 825–834 (2005). https://doi.org/10.1177/1045389X05055279 , Google ScholarCrossref
  36. 36. L. M. Miller, P. K. Wright, C. C. Ho, J. W. Evans, P. C. Shafer, and R. Ramesh, “ Integration of a low frequency, tunable MEMS piezoelectric energy harvester and a thick film micro capacitor as a power supply system for wireless sensor nodes,” in IEEE ECCE, 20-24 September (IEEE, 2009), pp. 2627–2634. Google ScholarCrossref
  37. 37. X. Wu, J. Lin, S. Kato, K. Zhang, T. Ren, and L. Liu, “ A frequency adjustable vibration energy harvester,” in Proceedings of PowerMEMS, Sendai, Japan, 2008. Google Scholar
  38. 38. J. Schaufuss, D. Scheibner, and J. Mehner, Sens. Actuators, A 171(2), 352–360 (2011). https://doi.org/10.1016/j.sna.2011.07.022 , Google ScholarCrossref, CAS
  39. 39. S. E. Jo, M. S. Kim, and Y. J. Kim, “ Passive-self-tunable vibrational energy harvester,” in 16th International Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS), 5-9 June (IEEE, 2011), pp. 691–694. Google ScholarCrossref
  40. 40. J. F. Gieras, J. H. Oh, M. Huzmezan, and H. S. Sane, “ Electromechanical energy harvesting system,” U.S. patent 8,030,807 (2005). Google Scholar
  41. 41. E. S. Leland and P. K. Wright, Smart Mater. Struct. 15, 1413 (2006). https://doi.org/10.1088/0964-1726/15/5/030 , Google ScholarCrossref
  42. 42. Y. Hu, H. Xue, and H. Hu, Smart Mater. Struct. 16, 6 (2007). https://doi.org/10.1088/0964-1726/16/1/N02 , Google ScholarCrossref, CAS
  43. 43. C. Eichhorn, F. Goldschmidtboeing, and P. Woias, “ A frequency tunable piezoelectric energy converter based on a cantilever beam,” in PowerMEMS, Sendai, Japan, 2008. Google Scholar
  44. 44. C. Eichhorn, F. Goldschmidtboeing, and P. Woias, J. Micromech. Microeng. 19(9), 094006 (2009). https://doi.org/10.1088/0960-1317/19/9/094006 , Google ScholarCrossref
  45. 45. D. J. Morris, J. M. Youngsman, M. J. Anderson, and D. F. Bahr, Smart Mater. Struct. 17, 065021 (2008). https://doi.org/10.1088/0964-1726/17/6/065021 , Google ScholarCrossref
  46. 46. J. M. Youngsman, T. Luedeman, D. J. Morris, and M. J. Andersonb, J. Sound Vib. 329, 277–288 (2010). https://doi.org/10.1016/j.jsv.2009.09.011 , Google ScholarCrossref
  47. 47. J. Loverich, R. Geiger, and J. Frank, “ Stiffness nonlinearity as a means for resonance frequency tuning and enhancing mechanical robustness of vibration power harvesters,” Proc. SPIE 6928, 692805 (2008). https://doi.org/10.1117/12.776314 , Google ScholarCrossref
  48. 48. V. R. Challa, M. G. Prasad, Y. Shi, and F. T. Fisher, Smart Mater. Struct. 17(1), 015035 (2008). https://doi.org/10.1088/0964-1726/17/01/015035 , Google ScholarCrossref
  49. 49. V. R. Challa, M. G. Prasad, and F. T. Fisher, “ High efficiency energy harvesting device with magnetic coupling for resonance frequency tuning,” Proc. SPIE 6932, 69323Q (2008). https://doi.org/10.1117/12.776385 , Google ScholarCrossref
  50. 50. T. Reissman, E. M. Wolff, and E. Garcia, “ Piezoelectric resonance shifting using tunable nonlinear stiffness,” Proc. SPIE 7288, 72880G (2009). https://doi.org/10.1088/0960-1317/20/3/035025 , Google ScholarCrossref
  51. 51. D. Zhu, S. Roberts, M. J. Tudor, and S. P. Beeby, Sens. Actuators, A 158(2), 284–293 (2010). https://doi.org/10.1088/0960-1317/20/3/035025 , Google ScholarCrossref, CAS
  52. 52. D. Zhu, J. Tudor, and S. Beeby, “ Frequency tuning of vibration energy harvesters using compressive and tensile axial loads,” in Proceedings of PowerMEMS, Seoul, Korea, 15-18 November 2011. Google Scholar
  53. 53. C. Peters, D. Maurath, W. Schock, and Y. Manoli, “ Novel electrically tunable mechanical resonator for energy harvesting,” in Proceedings of PowerMEMS 2008+ microEMS2008, Sendai, Japan, 2008. Google Scholar
  54. 54. C. Eichhorn, F. Goldschmidtboeing, Y. Porro, and P. Woias, “ A piezoelectric harvester with an integrated frequency tuning mechanisms,” in Proceedings of PowerMEMS, Washington DC, USA, 2009. Google Scholar
  55. 55. M. Wischke, M. Masur, F. Goldschmidtboeing, and P. Woias, J. Micromech. Microeng. 20, 035025 (2010). https://doi.org/10.1088/0960-1317/20/3/035025 , Google ScholarCrossref
  56. 56. M. G. Muriuki, “ An investigation into the design and control of tunable piezoelectric resonators,” Ph.D. dissertation (University of Pittsburgh, PA, 2004). Google Scholar
  57. 57. D. Charnegie, “ Frequency tuning concepts for piezoelectric cantilever beams and plates for energy harvesting,” M.Sc. thesis (School of Engineering, University of Pittsburgh, 2007). Google Scholar
  58. 58. W. J. Wu, Y. Y. Chen, B. S. Lee, and J. J. He, “ Tunable resonant frequency power harvesting devices,” Proc. SPIE 6169, 61690A (2006). https://doi.org/10.1117/12.658546. Google ScholarCrossref
  59. 59. H. Hu, H. Xue, J. Jin, H. Wang, Y. Hu, and X. Chen, “ Adjusting the resonant frequency of a segmented energy harvester through circuit connection patterns,” in Proceedings of Joint Conference of the 2009 Symposium on Piezoelectricity, Acoustic Waves, and Device Applications (SPAWDA) and 2009 China Symposium on Frequency Control Technology, 17-20 December (IEEE, 2009), p. 48. Google Scholar
  60. 60. C. Peters, D. Maurath, W. Schock, F. Mezger, and Y. Manoli, J. Micromech. Microeng. 19(9), 094004 (2009). https://doi.org/10.1088/0960-1317/19/9/094004 , Google ScholarCrossref
  61. 61. M. Lallart, S. R. Anton, and D. J. Inman, J. Intell. Mater. Syst. Struct. 21(9), 897–906 (2010). https://doi.org/10.1177/1045389X10369716 , Google ScholarCrossref
  62. 62. D. Guyomar, M. Lallart, and T. Monnier, IEEE/ASME Trans. Mechatron. 13(5), 604–607 (2008). https://doi.org/10.1109/TMECH.2008.2004411 , Google ScholarCrossref
  63. 63. V. R. Challa, M. G. Prasad, and T. F. Fisher, Smart Mater. Struct. 20, 025004 (2011). https://doi.org/10.1088/0964-1726/20/2/025004 , Google ScholarCrossref
  64. 64. C. Eichhorn, R. Tchagsim, N. Wilhelm, and P. Woias, J. Micromech. Microeng. 21(10), 104003 (2011). https://doi.org/10.1088/0960-1317/21/10/104003 , Google ScholarCrossref
  65. 65. C. Eichhorn, R. Tchagsim, N. Wilhelm, G. Biancuzzi, and P. Woias, “ An energy-autonomous self-tunable piezoelectric vibration energy harvesting system,” in Proceedings of IEEE MEMS, Cancun, Mexico, 23-27 January 2011. Google ScholarCrossref
  66. 66. D. Zhu, S. Roberts, M. J. Tudor, and S. P. Beeby, “ Closed loop frequency tuning of a vibration-based microgenerator,” in Proceedings of PowerMEMS 2008+ microEMS2008, Sendai, Japan, 2008. Google Scholar
  67. © 2012 American Institute of Physics.