Abstract
REFERENCES
- 1. B. Singh and M. Y. Othman, J. Renewable Sustainable Energy 1, 062702 (2009). https://doi.org/10.1063/1.3266963 , Google ScholarScitation
- 2. Y.-G. Deng and J. Liu, J. Renewable Sustainable Energy 1, 052701 (2009). https://doi.org/10.1063/1.3212675 , Google ScholarCrossref
- 3. Q. Liu, Q. Miao, J. J. Liu, and W. Yang, J. Renewable Sustainable Energy 1, 043105 (2009). https://doi.org/10.1063/1.3168403 , Google ScholarScitation
- 4. V. Leonov and R. J. M. Vullers, J. Renewable Sustainable Energy 1, 062701 (2009). https://doi.org/10.1063/1.3255465 , Google ScholarScitation
- 5. S. P. Beeby, M. J. Tudor, and N. M. White, Meas. Sci. Technol. 17(12), R175–R195 (2006). https://doi.org/10.1088/0957-0233/17/12/R01 , Google ScholarCrossref, CAS
- 6. C. B. Williams and R. B. Yates, Sens. Actuators, A 52(1–3), 8–11 (1996). https://doi.org/10.1016/0924-4247(96)80118-X , Google ScholarCrossref, CAS
- 7. P. D. Mitcheson, P. Miao, B. H. Stark, E. M. Yeatman, A. S. Holmes, and T. C. Green, Sens. Actuators, A 115(2–3), 523–529 (2004). https://doi.org/10.1016/j.sna.2004.04.026 , Google ScholarCrossref, CAS
- 8. M. El-hami, P. Glynne-Jones, N. M. White, M. Hill, S. Beeby, E. James, A. D. Brown, and J. N. Ross, Sens. Actuators, A 92(1–3), 335–342 (2001). https://doi.org/10.1016/S0924-4247(01)00569-6 , Google ScholarCrossref, CAS
- 9. P. Glynne Jones, M. J. Tudor, S. P. Beeby, and N. M. White, Sens. Actuators, A 110(1–3), 344–349 (2004). https://doi.org/10.1016/j.sna.2003.09.045 , Google ScholarCrossref, CAS
- 10. C. Keawboonchuay and T. G. Engel, IEEE Trans. Plasma Sci. 31(1), 123–128 (2003). https://doi.org/10.1109/TPS.2003.808874 , Google ScholarCrossref, CAS
- 11. Y. Jiashi, C. Ziguang, and H. Yuantai, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(1), 190–195 (2007). https://doi.org/10.1109/TUFFC.2007.224 , Google ScholarCrossref
- 12. K. A. Cook-Chennault, N. Thambi, and A. M. Sastry, Smart Mater. Struct. 17(4), 043001 (2008). https://doi.org/10.1088/0964-1726/17/4/043001 , Google ScholarCrossref
- 13. T. J. Kazmierski and S. Beeby, Energy Harvesting System (Springer, New York, 2011). Google Scholar
- 14. X. Huan, H. Yuantai, and W. Qing-ming, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55(9), 2104–2108 (2008). https://doi.org/10.1109/TUFFC.903 , Google ScholarCrossref
- 15. M. Ferrari, V. Ferrari, M. Guizzetti, D. Marioli, and A. Taroni, Sens. Actuators, A 142(1), 329–335 (2008). https://doi.org/10.1016/j.sna.2007.07.004 , Google ScholarCrossref, CAS
- 16. F. Cottone, R. Mincigruccia, I. Neria, F. Orfeia, F. Travassoa, H. Voccaa, and L. Gammaitonia, Proc. Comput. Sci. 7, 190–191 (2011). https://doi.org/10.1016/j.procs.2011.09.048 , Google ScholarCrossref
- 17. S. C. Stanton, C. C. McGehee, and B. P. Mann, Physica D 239(10), 640–653 (2010). https://doi.org/10.1016/j.physd.2010.01.019 , Google ScholarCrossref, CAS
- 18. M. S. M. Soliman, E. M. Abdel-Rahman, E. F. El-Saadany, and R. R. Mansour, J. Micromech. Microeng. 18, 115021 (2008). https://doi.org/10.1088/0960-1317/18/11/115021 , Google ScholarCrossref
- 19. L. Gu and C. Livermore, Appl. Phys. Lett. 97(8), 081904–081904 (2010). https://doi.org/10.1063/1.3481689 , Google ScholarScitation
- 20. L. Tang, Y. Yang, and C. K. Soh, J. Intell. Mater. Syst. Struct. 21(18), 1867–1897 (2010). https://doi.org/10.1177/1045389X10390249 , Google ScholarCrossref
- 21. D. Zhu, M. J. Tudor, and S. P. Beeby, Meas. Sci. Technol. 21(2), 022001 (2010). https://doi.org/10.1088/0957-0233/21/2/022001 , Google ScholarCrossref
- 22. A. E. K. Safari, Piezoelectric and Acoustic Materials for Transducer Applications (Springer, New York, 2010). Google Scholar
- 23. J. Farmer, “ A comparison of power harvesting techniques and related energy storage issues,” M.Sc. thesis (Virginia Polytechnic Institute and State University, USA, 2007). Google Scholar
- 24. H. A. Sodano, G. Park, and D. J. Inman, Shock Vib. Dig. 36(3), 197–205 (2003), available at http://www.me.mtu.edu/~hsodano/Publications/SVD%202004%20Power%20Harvesting%20Review.pdf. https://doi.org/10.1177/0583102404043275 , Google ScholarCrossref
- 25. S. Anton and H. A. Sodano, Smart Mater. Struct. 16, R1–R21 (2007). https://doi.org/10.1088/0964-1726/16/3/R01 , Google ScholarCrossref, CAS
- 26. S. Priya, J. Electroceram. 19(1), 167–184 (2007). https://doi.org/10.1007/s10832-007-9043-4 , Google ScholarCrossref
- 27. D. Guyomar and M. Lallart, Micromachines 2(2), 274–294 (2011). https://doi.org/10.3390/mi2020274 , Google ScholarCrossref
- 28. J. A. Goldman, “ Piezoelectric power generating arrangement activated by elements caused to rotate by natural energy source,” U.S. patent 6,438,957 (2002). Google Scholar
- 29. M. H. Mickle, C. C. Capelli, and H. Swift, “ Energy harvesting circuit,” U.S. patent 7,084,605 (2006). Google Scholar
- 30. M. Duron, R. Calvarese, R. Sandler, and T. Wulff, “ Energy harvesting in RFID systems,” U.S. patent 8,035,335 (2011). Google Scholar
- 31. D. Hohlfeld and R. V. Schaijk, “ Systems and methods for resonance frequency tuning of micromachined structures,” U.S. patent US20110074247 (2010). Google Scholar
- 32. B. A. Terzian and R. A. Brodmann, “ Self powered cell phone,” U.S. patent 7,266,396 (2007). Google Scholar
- 33. R. D. Blevins, Formulas for Natural Frequency and Mode Shape (Krieger, Malabar, FL, 2001). Google Scholar
- 34. S. Roundy and Y. Zhang, “ Toward self-tuning adaptive vibration-based microgenerators,” Proc. SPIE 5649, 373 (2005). https://doi.org/10.1117/12.581887 , Google ScholarCrossref
- 35. P. J. Cornwell, J. Goethal, J. Kowko, and M. Damianakis, J. Intell. Mater. Syst. Struct. 16(10), 825–834 (2005). https://doi.org/10.1177/1045389X05055279 , Google ScholarCrossref
- 36. L. M. Miller, P. K. Wright, C. C. Ho, J. W. Evans, P. C. Shafer, and R. Ramesh, “ Integration of a low frequency, tunable MEMS piezoelectric energy harvester and a thick film micro capacitor as a power supply system for wireless sensor nodes,” in IEEE ECCE, 20-24 September (IEEE, 2009), pp. 2627–2634. Google ScholarCrossref
- 37. X. Wu, J. Lin, S. Kato, K. Zhang, T. Ren, and L. Liu, “ A frequency adjustable vibration energy harvester,” in Proceedings of PowerMEMS, Sendai, Japan, 2008. Google Scholar
- 38. J. Schaufuss, D. Scheibner, and J. Mehner, Sens. Actuators, A 171(2), 352–360 (2011). https://doi.org/10.1016/j.sna.2011.07.022 , Google ScholarCrossref, CAS
- 39. S. E. Jo, M. S. Kim, and Y. J. Kim, “ Passive-self-tunable vibrational energy harvester,” in 16th International Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS), 5-9 June (IEEE, 2011), pp. 691–694. Google ScholarCrossref
- 40. J. F. Gieras, J. H. Oh, M. Huzmezan, and H. S. Sane, “ Electromechanical energy harvesting system,” U.S. patent 8,030,807 (2005). Google Scholar
- 41. E. S. Leland and P. K. Wright, Smart Mater. Struct. 15, 1413 (2006). https://doi.org/10.1088/0964-1726/15/5/030 , Google ScholarCrossref
- 42. Y. Hu, H. Xue, and H. Hu, Smart Mater. Struct. 16, 6 (2007). https://doi.org/10.1088/0964-1726/16/1/N02 , Google ScholarCrossref, CAS
- 43. C. Eichhorn, F. Goldschmidtboeing, and P. Woias, “ A frequency tunable piezoelectric energy converter based on a cantilever beam,” in PowerMEMS, Sendai, Japan, 2008. Google Scholar
- 44. C. Eichhorn, F. Goldschmidtboeing, and P. Woias, J. Micromech. Microeng. 19(9), 094006 (2009). https://doi.org/10.1088/0960-1317/19/9/094006 , Google ScholarCrossref
- 45. D. J. Morris, J. M. Youngsman, M. J. Anderson, and D. F. Bahr, Smart Mater. Struct. 17, 065021 (2008). https://doi.org/10.1088/0964-1726/17/6/065021 , Google ScholarCrossref
- 46. J. M. Youngsman, T. Luedeman, D. J. Morris, and M. J. Andersonb, J. Sound Vib. 329, 277–288 (2010). https://doi.org/10.1016/j.jsv.2009.09.011 , Google ScholarCrossref
- 47. J. Loverich, R. Geiger, and J. Frank, “ Stiffness nonlinearity as a means for resonance frequency tuning and enhancing mechanical robustness of vibration power harvesters,” Proc. SPIE 6928, 692805 (2008). https://doi.org/10.1117/12.776314 , Google ScholarCrossref
- 48. V. R. Challa, M. G. Prasad, Y. Shi, and F. T. Fisher, Smart Mater. Struct. 17(1), 015035 (2008). https://doi.org/10.1088/0964-1726/17/01/015035 , Google ScholarCrossref
- 49. V. R. Challa, M. G. Prasad, and F. T. Fisher, “ High efficiency energy harvesting device with magnetic coupling for resonance frequency tuning,” Proc. SPIE 6932, 69323Q (2008). https://doi.org/10.1117/12.776385 , Google ScholarCrossref
- 50. T. Reissman, E. M. Wolff, and E. Garcia, “ Piezoelectric resonance shifting using tunable nonlinear stiffness,” Proc. SPIE 7288, 72880G (2009). https://doi.org/10.1088/0960-1317/20/3/035025 , Google ScholarCrossref
- 51. D. Zhu, S. Roberts, M. J. Tudor, and S. P. Beeby, Sens. Actuators, A 158(2), 284–293 (2010). https://doi.org/10.1088/0960-1317/20/3/035025 , Google ScholarCrossref, CAS
- 52. D. Zhu, J. Tudor, and S. Beeby, “ Frequency tuning of vibration energy harvesters using compressive and tensile axial loads,” in Proceedings of PowerMEMS, Seoul, Korea, 15-18 November 2011. Google Scholar
- 53. C. Peters, D. Maurath, W. Schock, and Y. Manoli, “ Novel electrically tunable mechanical resonator for energy harvesting,” in Proceedings of PowerMEMS 2008+ microEMS2008, Sendai, Japan, 2008. Google Scholar
- 54. C. Eichhorn, F. Goldschmidtboeing, Y. Porro, and P. Woias, “ A piezoelectric harvester with an integrated frequency tuning mechanisms,” in Proceedings of PowerMEMS, Washington DC, USA, 2009. Google Scholar
- 55. M. Wischke, M. Masur, F. Goldschmidtboeing, and P. Woias, J. Micromech. Microeng. 20, 035025 (2010). https://doi.org/10.1088/0960-1317/20/3/035025 , Google ScholarCrossref
- 56. M. G. Muriuki, “ An investigation into the design and control of tunable piezoelectric resonators,” Ph.D. dissertation (University of Pittsburgh, PA, 2004). Google Scholar
- 57. D. Charnegie, “ Frequency tuning concepts for piezoelectric cantilever beams and plates for energy harvesting,” M.Sc. thesis (School of Engineering, University of Pittsburgh, 2007). Google Scholar
- 58. W. J. Wu, Y. Y. Chen, B. S. Lee, and J. J. He, “ Tunable resonant frequency power harvesting devices,” Proc. SPIE 6169, 61690A (2006). https://doi.org/10.1117/12.658546. Google ScholarCrossref
- 59. H. Hu, H. Xue, J. Jin, H. Wang, Y. Hu, and X. Chen, “ Adjusting the resonant frequency of a segmented energy harvester through circuit connection patterns,” in Proceedings of Joint Conference of the 2009 Symposium on Piezoelectricity, Acoustic Waves, and Device Applications (SPAWDA) and 2009 China Symposium on Frequency Control Technology, 17-20 December (IEEE, 2009), p. 48. Google Scholar
- 60. C. Peters, D. Maurath, W. Schock, F. Mezger, and Y. Manoli, J. Micromech. Microeng. 19(9), 094004 (2009). https://doi.org/10.1088/0960-1317/19/9/094004 , Google ScholarCrossref
- 61. M. Lallart, S. R. Anton, and D. J. Inman, J. Intell. Mater. Syst. Struct. 21(9), 897–906 (2010). https://doi.org/10.1177/1045389X10369716 , Google ScholarCrossref
- 62. D. Guyomar, M. Lallart, and T. Monnier, IEEE/ASME Trans. Mechatron. 13(5), 604–607 (2008). https://doi.org/10.1109/TMECH.2008.2004411 , Google ScholarCrossref
- 63. V. R. Challa, M. G. Prasad, and T. F. Fisher, Smart Mater. Struct. 20, 025004 (2011). https://doi.org/10.1088/0964-1726/20/2/025004 , Google ScholarCrossref
- 64. C. Eichhorn, R. Tchagsim, N. Wilhelm, and P. Woias, J. Micromech. Microeng. 21(10), 104003 (2011). https://doi.org/10.1088/0960-1317/21/10/104003 , Google ScholarCrossref
- 65. C. Eichhorn, R. Tchagsim, N. Wilhelm, G. Biancuzzi, and P. Woias, “ An energy-autonomous self-tunable piezoelectric vibration energy harvesting system,” in Proceedings of IEEE MEMS, Cancun, Mexico, 23-27 January 2011. Google ScholarCrossref
- 66. D. Zhu, S. Roberts, M. J. Tudor, and S. P. Beeby, “ Closed loop frequency tuning of a vibration-based microgenerator,” in Proceedings of PowerMEMS 2008+ microEMS2008, Sendai, Japan, 2008. Google Scholar
- © 2012 American Institute of Physics.
Please Note: The number of views represents the full text views from December 2016 to date. Article views prior to December 2016 are not included.

